LoopPoint and ELFies: Tools and Techniques to

Accelerate Simulations of Multi-threaded Applications
using Checkpointing

Alen Sabu!, Changxi Liu!, Akanksha Chaudhari', Harish Patil?,
Wim Heirman?, Trevor E. Carlson!

!National University of Singapore
2Intel Corporation

NUS

National University
of Singapore

intel

International Symposium on Performance Analysis of Systems and Software, May 22"9 2022, Singapore

BE &



Agenda

09.00 to 09.10
09.10 to 10.00
10.00 to 10.15
10.15 to 11.00
11.00 to 11.20

11.20 to 12.15
12.15 t0 13.00

Alen Sabu
Harish Patil

Akanksha Chaudhairi

Alen Sabu
Changxi Liu

Overview of the tutorial

Tools from Intel: Pin, PinPlay, SDE, ELFies
Break

Simulation and Single-threaded Sampling
Break

Multi-threaded Sampling and LoopPoint

Running Sniper and LoopPoint Tools




Agenda

09.00 t0 09.10 Alen Sabu Overview of the tutorial




Tools from Intel

e Speaker: Harish Patil
= Principal Engineer, Intel Corporation
* Topics Covered
= Binary instrumentation using Pin or writing Pintools
= PinPlay kit and PinPlay-enabled tools
= SDE build kit for microarchitecture emulation
= Checkpointing threaded applications using PinPlay, SDE
= Detailed discussion on ELFies including its generation and usage




Simulation and Sampling Overview

e Speaker: Akanksha Chaudhari
= Research Assistant, National University of Singapore
* Topics Covered
= Architectural exploration and evaluation
= Simulation as a tool for performance estimation
= Methods for fast estimation using simulation
= State-of-the-art single-threaded sampled simulation techniques




LoopPoint Methodology

* Speaker: Alen Sabu
= PhD Candidate, National University of Singapore
* Topics Covered
= Sampled simulation of multi-threaded applications
= Existing methodologies and their drawbacks
= Detailed discussion on LoopPoint methodology
= Experimental results of LoopPoint




Simulation and Demo

e Speaker: Changxi Liu

= PhD Student, National University of Singapore
* Topics Covered

= Qverview of Sniper simulator

= High-level structure of LoopPoint code

= Demo on how to use LoopPoint tools

" |ntegrating workloads to run with LoopPoint




Agenda

09.10 to 10.00 Harish Patil Tools from Intel: Pin, PinPlay, SDE, ELFies




LoopPoint and ELFies: Tools and Techniques to

Accelerate Simulations of Multi-threaded Applications
using Checkpointing

Alen Sabu!, Changxi Liu!, Akanksha Chaudhari', Harish Patil?,
Wim Heirman?, Trevor E. Carlson!

!National University of Singapore
2Intel Corporation

NUS

National University
of Singapore

intel

International Symposium on Performance Analysis of Systems and Software, May 22"9 2022, Singapore

BE &



Session 1

Tools and Methodologies

HARISH PATIL, PRINCIPAL ENGINEER (DEVELOPMENT TOOLS SOFTWARE)
INTEL CORPORATION



Pin: A Tool for Writing Program Analysis Tools

counter++; print (IP)

sub $Oxff, %edx sub $SOxff, %edx

ovl 0x8 (%ebp) , %eax counter++; print (EA)

jle <L1> movl 0x8 (%$ebp), %eax
counter++;print (br_taken)
jle <L1l>

s
Intel PIN

Test-program L’ PRO§ AMMlNG lANGUAGES

Operating System

Hardware

Normal output +
Analysis output

$ pin -t pintool —- test-program

(10 http://pintool.intel.com



http://pintool.intel.com/

PinPlay: Software-based User-level Capture and

Replay
Replayer
Logger = B[] L] BN = +
Program .
Libraries PI ﬂTOO|
m :o bina;iest/.inputs
: o application
oo
Platforms : Linux, Windows, MacOS No license
checking

Upside : It works! Large OpenMP / MPI programs, Oracle

Downside : High run-tfime overhead: ~100-200X for capture =
Cannot be turned on all the time

o http://pinplay.org



http://pinplay.org/

Pinball (single-threaded):

Initial memory/register + injections
O ——————————————————————————————

foo.reg Internal states initialized

Replayer + Simulator

— s T T
Replay 50 100 250

N instructions‘% 8 =
Initial § < E 5
memo (1'4 0
) ry N «» o
Image N

Inject events: based on instruction counts

foo.sel / foo.reg

(injections)

*System calls : skipped by injecting next rip/ memory changed
« CPUID, RDTSC : affected registers injected

- Signals/Callbacks : New register state injected

foo.text




Pinball (multi-threaded):

Pinball (single-threaded) + Thread-dependencies
foo.reg (per-thread) y ==
Initial registers:
T(n-1

y ___
Initial registers: | nitiq| registers:
10 Tl
foo.text
Application Memory (common)

Event injection works only if same behavior
foo.reg (per-thread) (same instruction counts) is guaranteed

foo.sel (per-thread) during replay

IAEEREEE— Thread T2 cannot execute instruction
5 until T4 executes instruction 1
Thread T1 cannot execute instruction 2

foo.race (per-thread) until T2 executes instruction 2

(1) MT Pinball == race-files provide determinism $2NU




ELFie : An Executable Application Checkpoint

« Checkpoint: Memory + Registers Startup-
 Application : Only program state captured -- no code
OS or simulator states User-:opdegiﬁed

 Executable : In the Executable Linkage Format

i —Application
commonly used on Linux pplication

___Memory |

Arch. State |-
(per thread) _‘
|




pinball2elf: Pinball converter to ELF

Startup-
code

njection
(.sel) ) User-specified
N7 pinball2elf code
L\ _/ \
x Application
Arch. - Memory
re User-specified
(orde; callbacks : per Stnat:a (Iip;er L
.race
process and per-
I A thread ﬂ'thm‘d')—

) http://pinelfie.orqg



http://pinelfie.org/

Getting started with pinball2elf

Prerequisite: ‘perf installed on your Linux box (perf stat /bin/Is should work)
« Clone pinball2elf repository: git clone https.//github.com/intel/pinball2elf.qit
» cd pinball2elf/src

 make all
 cd../examples/ST
o /testST.sh

Running ../../scripts//pinball2elf.basic.sh pinball.st/log_0

.kunning .J../scripts//pinball2elf.perf.sh pinball.st/log_0 st
export ELFIE_PERFLIST=0:0,0:1,1:1

hw_cpu_cycles:47272 hw_instructions:4951 sw_task_clock:224943
Tested : Ubuntu 20.04.4 LTS : gcc/g++ 7.5.0 and 9.4.0
@ and Ubuntu 18.04.6 LTS: gcc/g++ 7.5.0




ELFie types: basic, sim, perf

 basic |sim _______|perf

How to create scripts/pinball2elf.ba scripts/pinball2elf.sim  scripts/pinball2elf.perf.sh
sic.sh pinball .Sh pinball pinball perf.out
Exits gracefully? NO, either hangs or  NO, either hangs or  YES, when retired instruction
dumps core dumps core count reaches pinball icount
Simulator handles
exit
Environment NONE ELFIE_VERBOSE=0/1 "ELFIE_WARMUP" to decide whether to
. ELFIE_COREBASE=X use warmup
variables used Set affinity : thread 0 > core  "ELFIE_PCCONT" to decide how to end
X, thread 1 - core x+1 warmup/simulation regions

ELFIE_PERFLIST, enables
performance counting

@ Optional: Operating system state (SYSSTATE) per pinball:
pintools/PinballSYSState [See CGO2021 ELFie paper]




Example: ELFIE PERFLIST with a perf ELFie

ELFIE_PERFLIST, enables performance counting
( based on /usr/include/linux/perf_event.h
perftype: 0 --> HW 1 --> SW
HW counter: 0 --> PERF_COUNT_HW_CPU_CYCLES
HW counter: 1 --> PERF_COUNT_HW_CPU_INSTRUCTIONS
SW counter: 0 --> PERF_COUNT_SW_CPU_CLOCK

... <see perf_event.h:'enum perf_hw_ids' and ‘enum| ROI start: TSC 48051110586217756
perf_sw_ids') Thread start: TSC 48051110623843452
7% cd examples/MT _ Simulation end: TSC 48051110625045322
% ../../scripts/pinball2elf.perf.sh pinball.mt/log_0 perf.out Sim-end-icount 3436
% setenv ELFIE_PERFLIST "0:0,0:1,1:1* hw_cpu_cycles:36148 hw_instructions:3476
: N : task_clock:141901
% pmball.mf//og_O.perf.eV sw_task_cloc 0
—— perf.out.0.perf.txt Thread end: TSC 48051110625366502
f 9 f txt hw_cpu_cycles:40097 hw_instructions:4455
Per.oul.2.perr.Ix sw_task_clock:188637




PinPoints == Pin + SimPoint

ey My iy Py gy

—pProfile with a pin-based profiler

Intervals :

EP):gcg LI; E ?n 30 million Instructions
Analyze with SimPoint each
Find

hoose one simulation
~ point per phase
)

I PinPoint 1: Weight 30% _I PinPoint 2: Weight 70% I




PinPoints : The repeatability challenge

Profiler + SimPoint

Test-program,

Test-program Simulate

Problem: Two runs are not exactly same = PinPoints missed (PC marker based)

[ "PinPoints out of order” “PinPoint End seen before Start” |

Found this for 25/54 SPEC2006 runs!




PinPlay provides repeatability

Test-program —)[

PinPlay
Logger

|

program
pinball

Profiler + SimPoint

PinPlay ]

Re-logger

Region
pinballs

Simulate




Single-threaded PinPoints = SPEC2006/2017

pinballs publicly available

1. University of California (San Diego), Intel Corporation, and Ghent
University
https://www.spec.org/cpu2006/research/simpoint.html

2. University of Texas at Austin
https://www.spec.org/cpu2017/research/simpoint.html

3. Northwestern University
Public Release and Validation of SPEC CPU2017 PinPoints



https://www.spec.org/cpu2006/research/simpoint.html
https://www.spec.org/cpu2017/research/simpoint.html
https://arxiv.org/pdf/2112.06981

DCFG Generation with PinPlay

Dynamic Control-Flow Graph (DCFG)
Directed graph extracted for a specific execution:
Nodes = basic blocks
Edges =»control-flow : augmented with per-thread execution counts

Replay: w/custom

Record: ... dcfg-driver PinPIay tool using DCFG
-dcfg AP

DCFG JSON file




PinPlay + DCFG : Stronger Repeatability

~
Test-program

\_

PinPlay

Logger +
DCFG
generation

Ay program Computation loop

/

[ LoopPoint Profiler + ]

SimPoint

Whole

pinball entries

DCFG JSON file




LoopPoint: Simulation alternatives

Program
+

input

3. Binary-driven

Sniper

Whole- Profile and fin
program representative

pinball + DCFG

regions

PinPoint { Selective

GEMS

2. ELFie-driven

1. pinball-driven

MT pinballs

file re-logging

( Region
pinball

pinball2elf

Requirement: Execution invariant region specification
(PC+count for compute loop entries)

ELFie




Intel Software Development Emulator (/ntel SDE)

* The Intel® Software Development Emulator is a functional user-
level (ring 3) emulator for x86 (32b and 64b) new instructions built
upon Pin and XED (X86 encoder/decoder)

« Goal: New instruction/register emulation between the time when
they are designed and when the hardware is available.

« Used for compiler development, architecture and workload analysis,
and tracing for architecture simulators

* No special compilation required
« Supported on Windows/Linux/Mac OS
* Runs only in user space (ring 3)




How SDE Works

Based on Pin (http://pintool.intel.com ) and
XED decoder/encoder

(https://qithub.com/intelxed/xed )

New instruction

. . \ Legacy instruction
Instrument new instructions

N|O|O N|O

@)

©)

N

v

— Add call to emulation routine

— Delete original instruction functions

SDE emulationJ

Emulation routine: U U

— Update native state with emulated state _ [

Emulated

state ]

© http://www.intel.com/software/sde



http://pintool.intel.com/
https://github.com/intelxed/xed
http://www.intel.com/software/sde

Using SDE for PinPoints and LoopPoint

Prerequisites:

1. SDE build kit (version 9.0 or higher) from Intel
http://www.intel.com/software/sde

2. pinplay-tools from Intel
https://github.com/intel/pinplay-tools

3. SimPoint sources from UCSD
https://cseweb.ucsd.edu/~calder/simpoint/

4. Pinball2elf sources from Intel
http://pinelfie.org = https://github.com/intel/pinball2elf



http://www.intel.com/software/sde
https://github.com/intel/pinplay-tools
https://cseweb.ucsd.edu/~calder/simpoint/
http://pinelfie.org/
https://github.com/intel/pinball2elf

Getting ready for LoopPoint ...

1. Expand SDE build-kit : setenv SDE_BUILD KIT<path to SDE kit>
cp —r pinplay-tools/pinplay-scripts S SDE_BUILD KIT

3. Build simpoint (see pinplay-tools/pinplay-
scripts/README.simpoint)
*  ¢p <path>/SimPoint.3.2/bin/simpoint S SDE_BUILD KIT/pinplay-

scripts/PinPointsHome/Linux/bin/

4. Build global looppoint tools
= setenv PINBALL2ELF <path to pinball2lef repo>
= cd pinplay-tools/GlobalLoopPoint
= /sde-build-GlobalLoopPoint.sh




SDE kit expanded for LoopPoint

sde-external-9.0.0-2021-11-07-lin

— intelé4
— sde-global-event-icounter.so
— sde-global-looppoint.so

—— pinplay-scripts
PinPointsHome/

L— Linux

L— bin

— LICENSE.simpoint

—— simpoint




Running LoopPoint for an OpenMP program

* cd pinplay-tools/dotproduct-omp # see README there
* make # builds dotproduct-omp = base.exe
» ./sde-run.looppoint.global _looppoint.concat.filter.flowcontrol.sh

~/pinplay-tools/dotproduct-omp bbv files (*.bb), PinPoints
— dotproduct.1_282016.Data :> file(*.csv, *.CSV)

-— dotproduct.1_282016.pp |_> Region pinballs

L— whole_program.1

‘_> Whole-program pinball + DCFG

@ Create LoopPoint region pinballs and replay them



Summary: Simulation of Multi-threaded Programs:

Tools & Methodologies

Where to simulate? How to simulate?

SDE + LoopPoint
Compute-loop iterations as
“Unit of work’

1. Pinball-driven
2. ELFie-driven
3. Binary-driven

Are the regions representative?

1. Simulation (Sniper) -based

2.ELFie-based / Binary+ROIPerf (not covered)

Whole-program performance vs
egion-predicted performanceg




Agenda

10.30 to 10.45 Break
10.45t0 11.30 Akanksha Chaudhari  Simulation and Single-threaded Sampling




LoopPoint and ELFies: Tools and Techniques to

Accelerate Simulations of Multi-threaded Applications
using Checkpointing

Alen Sabu!, Changxi Liu!, Akanksha Chaudhari', Harish Patil?,
Wim Heirman?, Trevor E. Carlson!

!National University of Singapore
2Intel Corporation

NUS

National University
of Singapore

intel

International Symposium on Performance Analysis of Systems and Software, May 22"9 2022, Singapore

BE &



Session 2

Simulation and Sampling

AKANKSHA CHAUDHARI, RESEARCH ASSISTANT
NATIONAL UNIVERSITY OF SINGAPORE

35



Architectural Trends in Processor Design

~
o
-
=
o
o)
]
B4
o
©
o
put
o
o
[
L
o]
2
)
0
C
2
'_

Intel internal analysis of Intel products.
Future projections based on products still in design.
Future transistor counts are projections and are inherently uncertain.

2000 2010 2020 2030

Fig. 1: Moore Law number of transistor per device: past, present, future

[Intel]
e Source: https://www.intel.com

Moore’s Law predicts that
the number of transistors
per device will double
every two years.

First microprocessor had
2200 transistors — Intel

aspiring to have 1 trillion
transistors by 2030.




Architectural Trends in Processor Design

Main Goal: Meeting the ever-
increasing computational
demands while adhering to
stringent non-functional
requirements (ex: size, power)!

Fig. 2: Transistor innovations over time

@ Source: https://www.intel.com/




Exploration and Evaluation of New ldeas

e Architecture is rapidly evolving domain with a lot of new research directions.

A plethora of design choices are available:
= Ranging from the choice of components, the choice of operating modes of each
component, the choice of interconnects used, the choice of algorithms employed, etc.

* The process of exploration and evaluation of new ideas is often complex and time-
consuming.




Exploration and Evaluation of New ldeas

one do | pick?! I
Q BEST one.

)

Architect #1 Architect #2




Exploration and Evaluation of New ldeas

The Architect IRL

=
I/q@\ The Important Question:

. So how do we then explore new ideas quickly and
ﬁ‘\ evaluate them accurately to find the BEST idea?

/ 11\

|
|




Exploration and Evaluation of New ldeas

* Important questions when considering any idea:
= Does it work?
= How well does it work?

 Generally speaking, good idea optimizes a finite set of performance
metrics, say M.

Let M = {ml, my, .. mn},
where m; € M can be computational speed, energy efficiency,
memory utilization etc.




Exploration and Evaluation of New ldeas

A variety of different evaluation methods are available:

 Theoretical proofs

Formally proving the correctness/efficiency of the proposed design using
computational theory and mathematical logic.

* Analytical modeling

Mathematically modeling the proposed design at some level of abstraction to
analyze/quantify its performance.




Exploration and Evaluation of New ldeas

A variety of different evaluation methods are available:

e Simulation (at varying degrees of abstraction and accuracy)

A model that mimics the system behavior demonstrating its key functions and
operations accurately.

* Prototyping using existing systems

Implementing a draft version of the proposed design using existing systems (such
as FPGAs) to evaluate the performance.

e Actual implementation




Exploration and Evaluation of New ldeas

An “evaluation” of the evaluation methods:
 Theoretical proof

* Analytical modelling

e Simulation

* Prototyping

e Actual implementation




Exploration and Evaluation of New ldeas

An “evaluation” of the evaluation methods:

* | Theoretical proof
Analytical modelling

e Simulation

* Prototyping

e Actual implementation




Exploration and Evaluation of New ldeas

An “evaluation” of the evaluation methods:

* | Theoretical proof
g

Analytical modellin

 Simulation
* Prototyping

e Actual implementation




Exploration and Evaluation of New ldeas

An “evaluation” of the evaluation methods:

* | Theoretical proof
Analytical modelling

modeling of practical systems Jesign for all possible
can be extremely complex workload profiles

 Simulation
* Prototyping

e Actual implementation




Exploration and Evaluation of New ldeas

An “evaluation” of the evaluation methods:

Theoretical proof

Analytical modelling

Simulation
Prototyping

Actual implementation

modeling of practical systems
can be extremely complex

workload profiles

can be misleading




Exploration and Evaluation of New ldeas

An “evaluation” of the evaluation methods:

 Theoretical proof

* Analytical modelling
* Simulation

* Prototyping

e Actual implementation




Exploration and Evaluation of New ldeas

An “evaluation” of the evaluation methods:

 Theoretical proof

@ Ana |ytica| modelling significant quantifiable benefits

 Simulation
* Prototyping

e Actual implementation




Exploration and Evaluation of New ldeas

An “evaluation” of the evaluation methods:

 Theoretical proof

Analytical modelling

Simulation

[ Prototyping }
Actual implementation




Exploration and Evaluation of New ldeas

An “evaluation” of the evaluation methods:

 Theoretical proof

Analytical modelling

Simulation

[ Prototyping } | Relatively xpenshe

Actual implementation




Exploration and Evaluation of New ldeas

An “evaluation” of the evaluation methods:

 Theoretical proof

Analytical modelling

Simulation

[Prototyping } M vely Expensive

Actual implementation




Exploration and Evaluation of New ldeas

An “evaluation” of the evaluation methods:

 Theoretical proof

* Analytical modelling
* Simulation

* Prototyping

e Actual implementation




Exploration and Evaluation of New ldeas

An “evaluation” of the evaluation methods:

 Theoretical proof
* Analytical modelling
e Simulation

* Prototyping

. [Actual implementation}




Exploration and Evaluation of New ldeas

An “evaluation” of the evaluation methods:

 Theoretical proof
* Analytical modelling
e Simulation

* Prototyping

. [Actualimplementation} M




Exploration and Evaluation of New ldeas

An “evaluation” of the evaluation methods:

 Theoretical proof
* Analytical modelling

e Simulation

* Prototyping
y [ACtual implementation} M Especially if we have too many
options to choose from




Exploration and Evaluation of New ldeas

An “evaluation” of the evaluation methods:

 Theoretical proof

* Analytical modelling
* Simulation

* Prototyping

 Actual implementation




Exploration and Evaluation of New ldeas

An “evaluation” of the evaluation methods:

 Theoretical proof

* Analytical modelling

v

e Simulation

architectural designs in terms of

. Prototyping time, cost and efficiency!

 Actual implementation




Simulation: An Overview

Simulation enables the modeling of new research ideas at varying degrees
of abstraction and accuracy.

Main goals:
= Enables fast exploration of design space (to discover the next big idea!).
= Evaluation of new research ideas by estimating their relative performances.
= Evaluation, debugging and understanding the behavior of existing systems.

How does a simulator work?

=  Mimics system behavior to reflect its performance in terms of the metric of
interest (ex: Instructions per cycle, Runtime, etc).




Simulation: An Overview

e Caution: Inaccurate simulation = Inaccurate evaluation/results 2 Wrong
conclusions.

= Ex: Inaccurate assumptions, inaccurate extrapolation of performance, etc.

* Very important to select the right simulation technique!




Simulation: An Overview

* Anideal simulation technique:
= High speed: For faster exploration.
= High flexibility: For wider exploration.
= High accuracy/low simulation error: For accurate evaluation.

* Practical simulation techniques = tradeoffs:
= Speed vs. accuracy
= Speed vs. flexibility
= Flexibility vs. accuracy




Different Simulation Techniques

VIULAILIUIN N U U

v !

on level of detail w

p— N




Techniques to Simulate Faster

e Partially simulating to extrapolate performance:
= Simulating the first 1 billion instructions in detail.

I_I E Detailed simulation

= Fast-forwarding to skip the initialization phase and then simulating 1 billion
instructions in detail.

Fast-forwarding using
% Functional simulation
= Fast-forwarding to skip the initialization phase, microarchitectural state
warming, and then simulating the 1 billion instructions in detail

Warming up the
H microarchitectural state




Techniques to Simulate Faster

* Workload reduction
= Simulating for reduced input sets
= Simulating for reduced loop counts in workloads




Techniques to Simulate Faster

* Workload reduction
= Simulating for reduced input sets
= Simulating for reduced loop counts in workloads

* Problems with these techniques:




Techniques to Simulate Faster

* Workload reduction
= Simulating for reduced input sets
= Simulating for reduced loop counts in workloads

* Problems with these techniques:

= [Partial simulation + extrapolation] = fail to capture global variations in program
behavior and performance.

»100%
= 80%
s 60%




Techniques to Simulate Faster

* Workload reduction
= Simulating for reduced input sets
= Simulating for reduced loop counts in workloads

* Problems with these techniques:

= [Partial simulation + extrapolation] = fail to capture global variations in program
behavior and performance.

»100%
= 80%

= [Workload reduction] = benchmark behavior varies significantly across test, train and
reference inputs = do not reflect the actual performance.




Sampled Simulation to the Rescue!

 Sampling enables the simulation selective representative regions of an application.

= “Representative regions” refer to the subset of regions in the application that reflect the
behavior of the entire system when extrapolated.

* How to select these “representative regions”?
= Targeted sampling (like in SimPoint)

H—- H E (Full) program execution

= Statistical sampling (like in SMARTS) || Representative regions

PR




Sampled Simulation Techniques: SimPoint

Large-scale program behaviors vary significantly over their run times.

Difficult to estimate performance using previously discussed techniques.

% 100%
= 80%
S 60%
S 40%
S 20%
& 0%

L1 data cache miss rate

— Instructions Per Cycle

=

Main idea behind SimPoint:

Automatically & efficiently analyzing program behavior over different phases of execution.

SimPoint uses Basic Block Vectors (BBV) as a hardware-independent metric for
characterizing the program behavior in different phases.




Sampled Simulation Techniques: SimPoint

e How SimPoint works:

= STEP 1: Basic block profiling

* Generating the Basic Block Vectors
* Creating a Basic Block Similarity Matrix

= STEP 2: Clustering of Basic Block Vectors
 Random Projection
e K-means Clustering

= STEP 3: Identifying representative regions




Sampled Simulation Techniques: SimPoint

e How SimPoint works:

= STEP 1: Basic block profiling
* Generating the Basic Block Vectors




Sampled Simulation Techniques: SimPoint

A Basic Block Vector (BBV) is a single-dimensional array that maintains a count of how
many times each basic block was run in a given interval during the program execution.

BRANCH

Basic Block: A section of
code that has a single
point of entry and a
single point of exit.

LOOP! 5 iterations

0 1 2 3 4 5 6 < Indexed by Basic Block IDs

Basic Block Vector: 1 1 0 1 5 5 1 |+ Maintains the execution count for
each Basic Block




Sampled Simulation Techniques: SimPoint

e How SimPoint works:

= STEP 1: Basic block profiling

* Generating the Basic Block Vectors
* Creating a Basic Block Similarity Matrix




Sampled Simulation Techniques: SimPoint

e Basic Block Similarity: Measured using Euclidean or Manhattan Distances.

EuclideanDist(a,b) = Z (ai — bi)? ManhattanDist(a,b) = Z lai — bl

* Depicted by Basic Block Similarity Matrices.

* The program execution
progresses along the diagonal
of the matrix.

* Point at (x, y) gives similarity
index between BBV, and BBY,,.

. \ . - . . imilari
Using Manhattan distances Using Euclidian distances T darkness > T similarity




Sampled Simulation Techniques: SimPoint

e How SimPoint works:

= STEP 1: Basic block profiling

* Generating the Basic Block Vectors
* Creating a Basic Block Similarity Matrix

= STEP 2: Clustering of Basic Block Vectors
 Random Projection




Sampled Simulation Techniques: SimPoint

 The Basic Block Vectors obtained from the basic block profiling step have a very large number
of dimensions! (in the range of 2,000 -- 100,000)

100%
e  “Curse of dimensionality”:

=  Hard to cluster data as the number of dimensions increases.  80%7
=  (Clustering time increases significantly wrt as the number of
dimensions increases.

)

S

ES
I

40%

Percent of Max K

e Solution: Reduce the number of dimensions to 15

. . . . 20%
using Random Linear Projections.

0% +——— e e e
0 10 20 30 40 50
Number of Dimensions




Sampled Simulation Techniques: SimPoint

e How SimPoint works:

= STEP 1: Basic block profiling

* Generating the Basic Block Vectors
* Creating a Basic Block Similarity Matrix

= STEP 2: Clustering of Basic Block Vectors
 Random Projection
e K-means Clustering




Sampled Simulation Techniques: SimPoint

K-means clustering:
* |Initialize k cluster centers by randomly choosing k points from the data.

* Repeat until convergence:

= Do for all data points:
* Compare the distance from all k cluster centers.
e Assign it to the cluster with the closest center. o

= Update cluster center to the centroid of the newly
assigned memberships.

Choosing k: The clustering that achieves a BIC score that is at least 90% of the

spread between the largest and smallest BIC score is chosen.




Sampled Simulation Techniques: SimPoint

e How SimPoint works:

= STEP 1: Basic block profiling

* Generating the Basic Block Vectors
* Creating a Basic Block Similarity Matrix

= STEP 2: Clustering of Basic Block Vectors
 Random Projection
e K-means Clustering

= STEP 3: Identifying representative regions




Sampled Simulation Techniques: SimPoint

* Representative region = single simulation point
= BBV with the lowest distance from the centroid of all cluster centers.

* Representative regions = multiple simulation points
=  For each cluster, choose the BBV that is closest to the centroid of the cluster.

= SimPoint = LongSP === Multiple = Full

o 27
o
— 1_
0_ o jo) o o o o = > «Q c 172} « s
i &€ § 3 3§ 2 §¢§ § &8 § 3§ & % £ &£
: 7 5 - 2 : oy 3 . X : :
= = & @ = @ @ 1} = @
5 =S g, 3 3 3 & g, = % 3, =3 = e 3,
3
2 -
4
— 1_
0 o o q @@@@@@@@@ 3 el ° o g é <
& -+ 2 3 % 8 8 8 8 8 & & 2 2 % % 5 % %
£ 03 0T e 2 3
s a 2 3 = N S 2 s 3 a 3 3 T S
S 3 < = o 2 s 3 2 = S 3 o N z = e, g c




Sampled Simulation Techniques: SMARTS

 Main idea behind SMARTS:
= Using systematic sampling:
* To identify a minimal but representative sample from the population for

microarchitecture simulation
* To establish a confidence level for the error on sample estimates

= Simulating using two modes :

* Detailed simulation of sampled instructions = accounting for all the
microarchitectural details.

* Functional simulation of remaining instructions = accounting only for the
programmer-visible architectural states (ex: registers, memory).




Sampled Simulation Techniques: SMARTS

« STEP 1: Determine n based on the required confidence (assuming the coefficient of
variation V) using the following equation:

confidence interval = + [%] X

(where X is the mean, and z=100 (1 - a/2) is the percentile of the standard normal distribution)

e STEP 2: If the initial sample does not achieve the desired confidence, compute n using the
equation:

n 2|2

(where V.’ is the coefficient of variation for the obtained sample)




Sampled Simulation Techniques: SMARTS

Start sampling

SMARTS uses Systematic Sampling:

Total sample size:
n = N/k units
OR
nx U =n x N/k instructions

j+ 2k
|

Each unit
at offset | consists of U
1 instructions
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
1 1

Sample at a fixed interval
of length k units or k x U
instructions, where
k=N/n

N
| | <K |
| T [ T J | H




Sampled Simulation Techniques: SMARTS

Simulation:

U(k -1) = W instructions are
functionally simulated and large
structures may be warmed

U instructions are measured as a
sampling unit using detailed
simulation

W instructions of detailed

simulation warm state before
each sampling unit

characteristics

BNUS

National University
of Singapore




Sampled Simulation Techniques: SMARTS

 Evaluation results:

= Average error:

* 0.64% for CPI By simulating fewer than 50 million
e 0.59% for EPI instructions in detail per benchmark.

= Speedup over full-stream simulation:

* 35x for 8-way out-of-order processors
e 60x for 16-way out-of-order processors




Agenda

11.30 to 11.40 Break
11.40 to 12.20 Alen Sabu Multi-threaded Sampling and LoopPoint




LoopPoint and ELFies: Tools and Techniques to

Accelerate Simulations of Multi-threaded Applications
using Checkpointing

Alen Sabu!, Changxi Liu!, Akanksha Chaudhari', Harish Patil?,
Wim Heirman?, Trevor E. Carlson!

!National University of Singapore
2Intel Corporation

NUS

National University
of Singapore

intel

International Symposium on Performance Analysis of Systems and Software, May 22"9 2022, Singapore

BE &



Session 3

The LoopPoint Methodology

ALEN SABU, PHD CANDIDATE
NATIONAL UNIVERSITY OF SINGAPORE

89



Simulation in the Post-Dennard Era

 Modern architectures require smarter simulators

Intel's Alder Lake die shot.
Image source: WikiChip

BNUS

National University
of Singapore




Simulation in the Post-Dennard Era

 Modern architectures require smarter simulators [ s = T = s

10° +

.| 1year

* Microarchitectural simulation is slow
= NPB (D), SPEC CPU2017 (ref) can take years
= Solution — Simulate representative sample

. 1 month

102 4

. 1 day
10% 4

Sim. Time (in hours)

1004 - 1 hour

1071 4

NPB.B NPB.C NPB.D SPEC.Train SPEC.Ref

Benchmarks with 8 threads, static schedule,
passive wait-policy, simulated at 100 KIPS.




Simulation in the Post-Dennard Era

Modern architectures require smarter simulators N e

Microarchitectural simulation is slow
= NPB (D), SPEC CPU2017 (ref) can take years |
= Solution — Simulate representative sample

102 4

Sim. Time (in hours)

10! +

1004

1071 4

? Ca n We fu rt h e r b ri ng NPB.B NPB.C NPB.D SPEC.Train  SPEC.Ref
. . . Benchmarks with 8 threads, static schedule,
e down simulation time

passive wait-policy, simulated at 100 KIPS.




Simulation in the Post-Dennard Era

Modern architectures require smarter simulators
Microarchitectural simulation is slow

= NPB (D), SPEC CPU2017 (ref) can take years
= Solution — Simulate representative sample

? Can we further bring
e down simulation time

B Detailed Sim I Time-based Sampling I BarrierPoint B LoopPoint

NPB.B NPB.C NPB.D SPEC.Train SPEC.Ref

Benchmarks with 8 threads, static schedule,
passive wait-policy, simulated at 100 KIPS.




Multi-threaded Sampling is Complex

Instruction count-based Threads progress differently
techniques are unsuitable! due to load imbalance

Representing parallelism Differentiating thread
among threads waiting from real work

@ 1Alameldeen et al., “IPC Considered Harmful for Multiprocessor Workloads”, IEEE Micro 2006



Multi-threaded Sampling is Complex

Identify a unit of work that is invariant across executions

@ TAlameldeen et al., “IPC Considered Harmful for Multiprocessor Workloads”, IEEE Micro 2006



Extending Single-threaded Techniques

* SimPoint or SMARTS > Instruction count-based techniques
= Works well for single-threaded applications

Simulation run 1

La JLo JL e J d J e ]
100M i 100M : 100M : 100M : 100M
ins ins ins ins ins

time




Extending Single-threaded Techniques

* SimPoint or SMARTS > Instruction count-based techniques
= Works well for single-threaded applications

Simulation run 1 Simulation run 2

B BT B ] (B B arm s arem

100M i 100M i 100M : 100M : 100M 100M i 100M i 100M : 100M : 100M
ins ¢ ins i ins i ins I ins ins ¢ ins i ins i ins i ins
time time




Extending Single-threaded Techniques

* SimPoint or SMARTS > Instruction count-based techniques
= |nconsistent regions for multi-threaded applications

Simulation run 1

o a JLb Jl e J[ d [ e |
mliw Jlv Jlw JUx Jy

100M 100M 100M 100M 100M
ins ins ins ins ins




Extending Single-threaded Techniques

* SimPoint or SMARTS > Instruction count-based techniques
= |nconsistent regions for multi-threaded applications

Simulation run 1 Simulation run 2

ro (e () e () (e | D e e e
r () ) ) ) () | ) G ) ) )

100M 100M 100M 100M 100M 100M 100M 100M 100M 100M
ins ins ins ins ins ins © ins { ins i ins | ns
time time




Multi-threaded Sampling

FlexPoints

a Designed for non-synchronizing throughput workloads

Q Instruction count-based sampling T
CPUO
cPu1 (IS S
e Assumes no thread interaction cPU2 | —/< _— —
Time —»

Sampling unit

e Requires simulation of the full application

@ Wenisch et al., “SimFlex: statistical sampling of computer system simulation”, IEEE Micro’06



Multi-threaded Sampling

Time-based Sampling

a Designed for synchronizing generic multi-threaded workloads

Q Applies to generic multi-threaded workloads

A A y AUNS AN

e Extremely slow ) (
é]f\uﬁv‘/\ W
Requires simulation of the full application L=< vt [ oo ]

@ Carlson et al., “Sampled Simulation of Multithreaded Applications”, ISPASS'13
Ardestani et al., "ESESC: A fast multicore simulator using time-based sampling." HPCA, 2013




Multi-threaded Sampling

BarrierPoint

a Designed for barrier-synchronized multi-threaded workloads

Q Scales well with number of barriers e | [
\Apphc_/ami‘ e simiarity || "] Clustering Functional

SI h [ 1 1 Application . i -

ow when inter-barrier regions are large e, e polnime | et |,

Barrier
Barrier

o a |
v

Tl

b

@ Carlson et al., ”BarrierPoint: Sampled simulation of multi-threaded applications”, ISPASS’ 14



Multi-threaded Sampling

TaskPoint

a Designed for task-based workloads

) ) #pragma omp task
Q Uses analytical models to improve accuracy label (task type 1)-
do_something () ;

e Works only for the particular workload type

warmup measure sample fast-forward warmup measure sample
N

Thread 1 ----- - [AdB., J.....El
------ -------

0 Time

Thread 2

@ Grass et al., “TaskPoint: Sampled simulation of task-based programs”, ISPASS’16



The Unit of Work

SimPoint?!
SMARTS?

BarrierPoint> ‘ Inter-barrier regions
TaskPoint® = Task instances

‘ Instruction count Flex Points3 ‘ Instruction count

Time-based sampling* =) Time

ISherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS’02
2Wunderlich et al., “SMARTS: Accelerating Microarchitecture Simulation via Rigorous Statistical Sampling”, ISCA’03
3Wenisch et al., “SimFlex: statistical sampling of computer system simulation”, IEEE Micro’06

4Carlson et al., “Sampled Simulation of Multithreaded Applications”, ISPASS’13
@ >Carlson et al., “BarrierPoint: Sampled simulation of multi-threaded applications”, ISPASS’14

®Grass et al., “TaskPoint: Sampled simulation of task-based programs”, ISPASS’16



The Unit of Work

We consider generic loop iterations as the unit of work

ISherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS’02
2Wunderlich et al., “SMARTS: Accelerating Microarchitecture Simulation via Rigorous Statistical Sampling”, ISCA’03
3Wenisch et al., “SimFlex: statistical sampling of computer system simulation”, IEEE Micro’06

TmNUS

National University
of Singapore

4Carlson et al., “Sampled Simulation of Multithreaded Applications”, ISPASS’13
@ >Carlson et al., “BarrierPoint: Sampled simulation of multi-threaded applications”, ISPASS’14

5Grass et al., “TaskPoint: Sampled simulation of task-based programs”, ISPASS’16



Overall Methodology




Overall Methodology




Overall Methodology

Program Looppoints
binary, inputs Specification




Overall Methodology

Program Looppoints
binary, inputs Specification

Checkpoint
driven

Region
Checkpoints




Overall Methodology

Program Looppoints
binary, inputs Specification

Checkpoint
driven

Region
Checkpoints

Binary driven




Loop-based Profiling

‘Where to simulate

Program
binary, inputs

Looppoints
Specification

Region
Checkpoints

Binary driven

How to simulate

National University
of Singapore

@‘G: Dynamic Control-Flow Graph




Loop-based Profiling

[ cpeoine
Specification

Checkpoint
driven 4

3. Checkpoints
Det

5. Performance
Generation n

Extra

Binary driven

NUS

National University
of Singapore

G: Dynamic Control-Flow Graph




Loop-based Profiling

Application
Execution
Recording

Looppoints

Specification

2 Checkpoint
< 4. (Warmup +

| 3. Checkpoints | Region driven De((m‘gd REZ‘GL 5. Performance
a Generation Checkpoints S Extrapolation
15 o Binary driven

@G: Dynamic Control-Flow Graph

ANUS

National University
of Singapore




Loop-based Profiling

Application
Execution
Recording

Per-thread
Feature
Vectors

@G: Dynamic Control-Flow Graph




Loop-based Profiling

@G: Dynamic Control-Flow Graph




Loop-based Profiling: Flow-control

* Load Imbalance can affect profiling

= Make sure threads make equal forward progress -

* Implementation: Control the forward progress of threads S“C(‘;CGGCT)‘ZF::)‘O”

= Synchronize threads (barriers) externally at regular intervals

Synchronization

= Make sure all threads execute similar number of instructions Filtering




Loop-based Profiling: Flow-control

* Load Imbalance can affect profiling

= Make sure threads make equal forward progress -

* Implementation: Control the forward progress of threads S““i‘;c""‘i:j:tt)m”

= Synchronize threads (barriers) externally at regular intervals

Synchronization

=  Make sure all threads execute similar number of instructions Filtering
Flow-control
to
t
ta
t3
Start




Loop-based Profiling: Flow-control

* Load Imbalance can affect profiling

= Make sure threads make equal forward progress -

* Implementation: Control the forward progress of threads S“‘;‘;g‘izf:tt)m”

= Synchronize threads (barriers) externally at regular intervals

Synchronization

=  Make sure all threads execute similar number of instructions Filtering
Flow-control
to
t
ta
t3
Start




Loop-based Profiling: Sync Filtering

* Goal: Filter out synchronization during profiling
= Profiling data should contain only real work

Flow-control

Slice Generation
(PC, count)

o -

600

500

400

300

200

100 I

.o & I ol
f—)/
'\/. O

Bill
~
=]
S

Instruction count

Em
«+%

\\ef’ (_) «-\3’
® NI g 'b v» o < »
Gf & f& b” ) 'f"Q ‘s@ & o@ c)“' © ®
I v © © o Q‘g
N & © &




Loop-based Profiling: Sync Filtering

* Goal: Filter out synchronization during profiling

Flow-control

= Profiling data should contain only real work

Slice Generation
(PC, count)

=  Automatic detection using loop analysis? -
= | Ignore sync library code (Ex. 1ibiomp5.so, libpthread.so)

e Solutions

@ 1Li et al., "Spin detection hardware for improved management of multithreaded systems," TPDS, 2006



Loop-based Profiling: Sync Filtering

lgnore sync Iibrary code (EX. libiomp5.so, libpthread. so) Flow-control

Slice Generation
(PC, count)

Application execution

main math main main sync sync main main sync main
image lib image image lib lib image image lib image

data

v

time

@ 1Li et al., "Spin detection hardware for improved management of multithreaded systems," TPDS, 2006



Loop-based Profiling: Sync Filtering

lgnore sync Iibrary code (EX. libiomp5.so, libpthread. so) Flow-control

Slice Generation
(PC, count)

Application execution

main math main main sync sync main main sync main
image lib image image lib lib image image lib image

data

v

time

@ 1Li et al., "Spin detection hardware for improved management of multithreaded systems," TPDS, 2006



Loop-based Profiling: Slice Generation

* Region start/stop
= Global instruction count reaches threshold (#threads X 100 M)

= Region boundary at a loop entry/exit — use DCFG analysis -

Synchronization
Filtering

Flow-control




Loop-based Profiling: Slice Generation

* Region start/stop
= Global instruction count reaches threshold (#threads X 100 M)

= Region boundary at a loop entry/exit — use DCFG analysis -

* Looppoint region markers (PC, countp)

Flow-control

Synchronization
Filtering

= Global count of loop entries: invariant across executions
= Simulate the same amount of work

~_

Program
execution




Loop-based Profiling: Slice Generation

* Region start/stop
= Global instruction count reaches threshold (#threads X 100 M)

= Region boundary at a loop entry/exit — use DCFG analysis -

* Looppoint region markers (PC, countp)

Flow-control

Synchronization
Filtering

= Global count of loop entries: invariant across executions
= Simulate the same amount of work

(PCy, countl)l: Region/Slice :l(PCZ, count,)
~_
|
Program I
execution | Threshold Instructions >
1 1




Loop-based Profiling: Slice Generation

¢ BaS|C BlOCk (BB) BB Example Assembly Code
= Section of code with single entry and exit Bl o,

addl zero, t12, s6
subl t7, O0x1, t7
cmpeq s6, 0x25, vO
cmpeq s6, 0, tO

bis v0, t0, vO

bne v0, 0x120018c48
B subl t7, O0x1, t7
cmple t7, 0x3, t2

beg t2, 0x120018b04
C |ble t7, 0x120018bb4

ID: A B C

@ Image source: Sherwood et.al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS 2002



Loop-based Profiling: Slice Generation

¢ BaS|C BlOCk (BB) BB Example Assembly Code
. . . . Al 1 2, 0x8, t4
= Section of code with single entry and exit nd a2, Omtr. 12
. addl zero, t12, s6
e Basic Block Vector (BBV) A fswre70xt, w7
Lt cmpeq s6, 0x25, vO
= Execution fingerprint of an application interval - ped ser O
. . -7 b 0, 0x120018c48
= \ector with one element for each basic bjeck o
i cmple  t7, 0x3, t2
i beq t2, 0x120018b04
/ C [ble _ - % —0%120018bb4
A : _______ - | ..
BB Exec Count: < 0; ">
weigh by Block Size: 1, .>

@ Image source: Sherwood et.al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS 2002



Loop-based Profiling: Slice Generation

¢ BaS|C BlOCk (BB) BB Example Assembly Code
. . . . A srl a2, 0x8, t4
= Section of code with single entry and exit and a2, OxEE, t12
. addl zero, t12, s6
e Basic Block Vector (BBV) subl  t7, Ox1, t7
cmpeq s6, 0x25, vO
. . . . . . m 6, 0, t0
= Execution fingerprint of an application interval S SN

bne v0, 0x120018c48

B subl t7, O0x1, t7
cmple t7, 0x3, t2

= \ector with one element for each basic block

= Exec Wt = entry count X number of instructions beq  t2. 0x120018504
C |ble t7, 0x120018bb4
ID: A B C
BB Exec Count: < 1, 20, 0, .>
weigh by Block Size: < 8, 3, 1, .>
BB Exec Wt: < 8, 60, 0, .>

@ Image source: Sherwood et.al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS 2002



Loop-based Profiling: Slice Generation

BB Example Assembly Code
A srl a2, 0x8, t4
and a2, Oxff, t12
addl zero, t12, sé6
subl t7, Ox1, t7
cmpeq s6, 0x25, vO
cmpeq s6é, 0, tO
[ A:8, B:60, C:0, .] bis  v0, £0, v0
BBV bne v0, 0x120018c48
B subl t7, Ox1, t7
cmple t7, 0x3, t2
beqg t2, 0x120018b04
C |ble t7, 0x120018bb4
ID: A B C
BB Exec Count: < 1, 20, 0, .>
weigh by Block Size: < 8, 3, 1, .>
BB Exec Wt: < 8, 60, 0, .>
NUS

@ Image source: Sherwood et.al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS 2002

National University
of Singapore




Loop-based Profiling: Vector Concatenation

e Ratio of instructions per thread may differ

pop2_s.1 active xz_s.2 active Ibm_s.1 active
1.0 —— thread0 —— thread2 —— thread4 —— thread6 1.0 —— thread0 —— threadl —— thread2 — 3 1.04 —— thread0 —— thread2 —— thread4 —— thread6
Vﬂ— threadl —— thread3 —— thread5 —— thread7 —— threadl —— thread3 ~—— thread5 —— thread?7
0.8 0.8 0.8
(=] o o
=1 =] =]
o c e
< 0.6 < 0.6 £ 0.6
> > =1
o o (=]
L L =
3 0.41 T 0.4 = 0.4
o o o
k=1 k= S
021 02 021 AR R R
0.0 0.0 0.04
0 50 100 150 200 250 300 350 0 10 20 30 40 0 100 200 300 400 500 600 700
global slice number global slice number global slice number

BNUS

National University
of Singapore




Loop-based Profiling: Vector Concatenation

e Ratio of instructions per thread may differ
* Global-BBVs: Concatenate per-thread BBVs to larger Global BBV

BB Example Assembly Code BB Example Assembly Code
A |srl a2, 0x8, t4 A |srl a2, 0x8, t4
and a2, Oxff, t12 and a2, Oxff, t12
addl zero, t12, s6 addl zero, t12, s6
subl t7, Ox1, t7 subl t7, 0x1, t7
cmpeq s6, 0x25, vO cmpeq s6, 0x25, vO
cmpeq s6, 0, tO cmpeq s6, 0, tO
bis v0, t0, vO bis v0, t0, vO
bne v0, 0x120018c48 bne v0, 0x120018c48
B subl t7, Ox1, t7 B subl t7, 0x1, t7
cmple t7, 0x3, t2 cmple t7, 0x3, t2
beq t2, 0x120018b04 beq t2, 0x120018b04
C |ble t7, 0x120018bb4 C |ble t7, 0x120018bb4
M subl t7, O0x1, t7 M subl t7, Ox1, t7
gt t7, 0x1200180b90 gt t7, 0x120018b90




Loop-based Profiling: Vector Concatenation

BB Example Assembly Code -

a1 n FaY (o) =0 I
A 1 BB Example Assembly Code |[.~ ’l_ _le_r_e_a'ij_ 9_ -
4 A srl a2, 0x8, t4
g and a2, Oxff, t12

addl zero, t12, s6
subl t7, 0x1, t7
cmpeq s6, 0x25, vO
cmpeq s6, 0, tO

o 1~ I~ O 0

B bis v0, t0, vO
) bne v0, 0x120018c48
H B subl t7, 0Ox1, t7
c 14 cmple t7, 0x3, t2
beg t2, 0x120018b04
C |ble t7, 0x120018bb4
M

subl t7, O0x1, t7
gt t7, 0x120018b90




Loop-based Profiling: Vector Concatenation

BB Example Assembly Code -

N fs | D Fal Q

BB Example Assembly Code (.~ |

BB ID: A B C 4 A [srl a2, 0x8, t4
. g and az, Oxff, t12
BB Exec Wt: < 8, 60, o, .. > C adl cevo. t12. s6
q subl t7, Ox1, t7
4 cmpeq s6, 0x25, vO0
1 cmpeq s6, 0, tO
e bis v0, t0, vO
; bne v0, 0x120018c48
1 B subl t7, 0x1, t7
. ¥ cmple t7, 0x3, t2
BB ID: N o P beqg t2, 0x120018b04
BB Exec Wt: <5, 9, 3, .> {7C |ble ©7, 0x1200180b4
'k
q
M subl t7, Ox1, t7

gt t7, 0x120018b90




Loop-based Profiling: Vector Concatenation

BB Example Assembly Code [~ T LT - -
a1 n FaY (o) =0 I
N 1 BB Example Assembly Code |[.~ ’l_ _Tlh_r_e_a_d_ (_)_ -
BB ID: A B C 3 A srl a2, 0X8/ t4
. g and az, Oxff, t12
BB Exec Wt: <8 ’ 60 ’ 0 roe > q addl zero, t12, s6
d subl t7, O0x1, t7
0x25, vO
o o o . . . 0, toO
[ A.8, Bo60, c.o, cee N05[ 0.90’ P°3’ '"] to, VO
Global-BBY @ 0x120018c48
d B |supl  t7, ox1, t7
. S F cmple t7, 0x3, t2
BB ID: N O P beq £2, 0x1200180b04
BB Exec Wt: <5, 90, 3, . > { ¢ [ble t7, 0x120018bbA
a
7 M subl t7, 0x1, t7
gt t7, 0x120018b90




A LoopPoint Region

638.imagick_s/magick/morphology.c

2842 #if defined(MAGICKCORE_OPENMP_SUPPORT) 31 ii
2843  #pragma omp parallel for schedule(static,4) shared(progress,status) \ ::
2844 magick_threads(image,result_image,image->rows,1) Uz- . ‘ ' . A . ‘ l . l . .ii‘ ﬁ ‘ l ‘ h . . ‘ ‘ l ‘ h . A ‘ . ﬂ ’ n ‘ A . ‘ l . (j
2845 #endif a i1
2846 for (y=0; y < (ssize_t) image->rows; y++) 14 ii
2847 { o
0 500M 1000M 1500M 2000M 2500M 3000M
2886 for (x=0; x < (ssize_t) image->columns; X++) Time (cycles)
2887 {
3021 for (v=0; v < (ssize_t) kernel->height; v++) {
3022 for (u=0; u < (ssize_t) kernel->width; u++, k--) {
3034 } /*u ¥/
3037 } /* v o*/
3342 } /F x ¥/

3357} /*y */

638.imagick s, train input, 8 threads

ANUS

National University
of Singapore




A LoopPoint Region

638.imagick_s/magick/morphology.c

TT
2842 #if defined(MAGICKCORE_OPENMP_SUPPORT) 34 2
2843  #pragma omp parallel for schedule(static,4) shared(progress,status) \ ::
[I8}
2844 magick_threads(image,result_image,image->rows,1) o 2 . ' A ‘ l l . :: ‘ ﬁ l h . ‘ l h A ‘ . ﬂ n A ‘ l
2845 #endif a i
[}
2846 for (y=0; y < (ssize_t) image->rows; y++) » 14 | |
2847 { AN ]
N 0- ]
""" N 0 500M .- “1000M T == -1500M_ __ 2000M 2500M 3000M
2886 for (x=0; x < (ssize_t) image->columns; x++) \\ - Time (cyclés) =~ ~~--____
2887 { S e e
\ it
3021 for (v=0; v < (ssize_t) kernel->height; v++) { \\ 3]
3022 for (u=0; u < (ssize_ t) kernel->width; u++, k--) { \\ E E
< <]
...... S 213 =]
g2 e e e ————-———0
3034 }/F U e o e = = = = === D R 8
10 )
...... 149 Q
3037 } /* v o*/
0.
* * T T T T T T
S LA 0 5M 10M 15M 20M 25M
3357} /*y */ Time (cycles)

638.imagick s, train input, 8 threads

NUS

National University
of Singapore




Identifying Simulation Regions

* Group similar Global-BBVs




Identifying Simulation Regions

 Group similar Global-BBVs

= K-means algorithm: Centroid-based clustering




Identifying Simulation Regions

 Group similar Global-BBVs

= K-means algorithm: Centroid-based clustering

* Vector closest to centroid is the representative




Identifying Simulation Regions

Centroid

 Group similar Global-BBVs
= K-means algorithm: Centroid-based clustering

* Vector closest to centroid is the representative
e Simulation regions (looppoints)

= Checkpoints generated from the application
= Use (PC, countpc) information of representatives

v,
Representative regions




Application Reconstruction

e Representative regions (looppoints) are simulated in parallel »
* Warmup handling

= Simulate a large enough warmup region before simulation region




Application Reconstruction

e Representative regions (looppoints) are simulated in parallel »
* Warmup handling

= Simulate a large enough warmup region before simulation region
* Application performance

= The weighted average of the performance of simulation regions

repy

total runtime = Z runtime; X multiplier;

i=rep,




Application Reconstruction

»

m "
Yisoinscount;

multiplier; = —
inscount;

/ m regions represented by j™ looppoint

repy /
total runtime = Z runtime; X multiplier;

i=rep,




Experimental Setup

 Simulation Infrastructure
= Sniper! 7.4 >>I OpenMP

* Mimics Intel Gainestown 8/16 core SNi per Frebling HPG since 1997

 Benchmarks and OpenMP settings '
= SPEC CPU2017 speed benchmarks
* |Input: train; Threads: 8; Wait policy: Active, Passive
= NAS Parallel Benchmarks (NPB)
* |Input: Class C; Threads: 8, 16; Wait policy: Passive

= OpenMP scheduling policy: static

@ 1Carlson et.al., “Sniper: Exploring the level of abstraction for scalable and accurate parallel multi-core simulation”, SC 2011
Image source: https://www.openmp.org/; https://www.spec.org/cpu2017/ ; https://www.nas.nasa.gov/



SPEC CPU2017 Analysis

Application barrier reduction atomic atomic | atomic
. :: tvarern) | P2l nowai) | (loat8_a | (floatd | (fixedd_
i dd) _max) add)

Yes Yes

Yes Yes Yes

Yes Yes Yes Yes Yes Yes

Yes Yes Yes

Yes Yes Yes Yes Yes

Yes Yes Yes Yes

Yes Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes

Source: SPEC CPU®2017 documentation index




Workload Type Supported

e Software

= Static OpenMP scheduling (OMP_WAIT_POLICY=STATIC)

= Homogeneous parallel threads doing equal amount of work
 Hardware

= Simulated hardware needs to be homogeneous

= No dynamic hardware events supported




"
=
S
"
)
14
>
O
©
S
S
O
O
<

Prediction error wrt. performance of whole application

8 threads

’

SPEC CPU2017 with train inputs

7'SZX°LS9
1'S-ZX'LS9
T'S-swol 69
T'S-PEAIU0I0Y 619
T's-qeuyy9
T's-qeu’yv9
T's-1bewr’gey
1's-zdod’'8z9
T's-ywed'/z9
T'S-HM'TZ9

T's-wql'e6T19

T'S-NSS@n1des'/09

Z'S-SanemMd €09

T'S-seAMq’'E09

HEl passive

[ active

T T T T T T T 1
0o ~ © N F M N & O
%4041 swijunJ ‘sge

ational Uni
of Singapore

=ANUS




'S ZX°[S9
n
1S 2X'£59 =)
Z

1'S swol 4G9

National University

of Singapore

T'S PEIU0I0s 6179
7's qeu'yy9

T'Ss qeuvt9

T's ¥oibewrgeg
T's ¢zdod'gz9

T's ywes'/z9
T'S IM 129

1's wqre19

(%]
gl
@©
4]
= )
..hL nW W T'S NSSanIded'£09
Se) Y|
~ 0 © _
2 ©c o 2'S SaAeMQq'£09
S
g - - 1°'S S9AeMq'€09
£
c T T ; |
= @ © < ~ o
m o o o o o
+ . .
< HIp 'sge PidIN Yyduedq
=
2
™~
S L 2's-2x° L9
o
N
= - 152X LS9
o
(&)
O - T°S-SWoJvS9
w
o
n

F T'S-pEIU010) 619
- Z's-qeuyt9

F T's-qeuvt9

F T's-¥d1bewi'ge9
I 1°'s-zdod 879

- T's-ywed’/z9
FT'S-HM TZ9

F T's-war619

 T'S-NSSgn1oes'/09

active
passive

L z's-saAemq €09

L 1°s-sanemq €09
N
T T T T T T T 3
[ce) ~ © [Te] < m o — o

0410412 awiunl ‘sge

Prediction error wrt. performance of whole application

"
=
S
"
)
14
>
O
©
S
S
O
O
<




'S ZX°[S9

1'S ZX'LS9

of Singapore

1'S swol 4G9

"2 H

g
£
S
s
g
5
5
z

m

@

T'S PEIU0I0s 6179
7's qeu'yy9

T'Ss qeuvt9

T's ¥oibewrgeg
T's ¢zdod'gz9

T's ywes'/z9

'S UM TZ9

1's wqre19
1'S NSSgn12e3°/09

Z'S SOABM( €09

I active
HE passive

1'S S9ARM( €09

.8
0.4
0.2
0.0 -

DdIN Yyouelq

- ¢'S-ZX'LS9
1'S-ZX'LS9

- T'S-swol'$G9

SPEC CPU2017 with train inputs, 8 threads

r T'S-Pe>lu0304'6%9

- Z’'s-qeu'yv9

Active: 2.33%
Passive: 2.23%

- T'S-qeu'yv9

F T's-¥d1bewi'ge9

- 1's-zdod gz9

r T'S-ywed'[Z9

- T'S-HIM'TZ9

r T'S-wqI'6T9

 T'S-NSSgn1oes'/09

active
passive

L z's-saAemq €09

L 1°S-SoABMQ €09

Prediction error wrt. performance of whole application

"
=
S
"
)
14
>
O
©
S
S
O
O
<

T T T T T T T
o ~ O N < M N - O

0410412 awiunl ‘sge

II‘|.|




Changing Thread Count

Runtime prediction error wrt. whole application runtime

NPB 3.3 with Class C inputs, 8 and 16 threads, passive wait-policy

[ 8 cores
5|l 16 cores

abs. runtime error%
w

bt cg ep ft is lu mg sp ua




Changing Thread Count

Runtime prediction error wrt. whole application runtime

NPB 3.3 with Class C inputs, 8 and 16 threads, passive wait-policy

8 cores: 2.87%
16 cores: 1.78%

[ 8 cores
5|l 16 cores

abs. runtime error%
w

bt cg ep ft is lu mg sp ua




Speedup

Parallel and serial speedup achieved for LoopPoint

SPEC CPU2017 with train inputs, 8 threads, active wait-policy

103 4 -
Serial

I Actual

m Theoretical

Parallel

[ Actual
I Theoretical

Speedup

~ N — > > > > iy = N ~ ~ ~ N
Wl wl V'Al ml wn ml m‘ V’I V’I wl UII wl UII wl
o g =4 < o~ ~ Q Eel o n N N
g g 17 .g E S Q 2 © © M £ X X
H H vl 2 > 5 9 =) c < = 3] ~ ™~
g g o o = o Q © < < c = 0 0
a2 & 2 b © ~ x £ 3 3 2 b © ©
2 2 5 N N = © © 5 n

o0 o ® > © o i ©
o o I8} m o
© © ~ © 2

o ©

©




Speedup

Parallel and serial speedup achieved for LoopPoint

SPEC CPU2017 with train inputs, 8 threads, active wait-policy

Serial
I Actual
m Theoretical
Parallel
[ Actual
I Theoretical
T T R R s R R S B S S B B 1 |-9
O T B T - R BB B Serial: 9x
[ [ x x
s s 2 2 > § g§ g £ E 2 6 £ = .
2% 25 % 2 f sz oz 5 ;B oy Parallel: 303x
™ ™ ° Q © o L ©
o o S © 0 o
8 o




Speedup

Parallel and serial speedup achieved for LoopPoint

NPB with Class C inputs, 8 and 16 threads, passive wait-policy

10° o N
Serial 8 cores
Actual 10° ] . Serial
Theoretical m Parallel
Parallel 16 cores
g 107 4 Actual 2 [ Serial
S Theoretical 3 1024 I Parallel
() [}
Q Q
2 n
10! o 10 4

A N H H H H H M H N M H AN

w w v w v w v w w w w w w w

] 3 =4 € ‘t <t o & o o o ) N Q‘

s ¢ 2 5 = £ g 2 e ¢ 9 £ X X

2 2 = o N S = @ < < c 2 0 n

g E =1 o 2 ~ :5 £ 3 3 S j © ©

™ ) o e © o L ©

o o o m o

o o
o

BNUS

National University
of Singapore




Speedup

Parallel and serial speedup achieved for LoopPoint

NPB with Class C inputs, 8 and 16 threads, passive wait-policy

10° 4 .
Serial 8 cores |
Actual 10° 1 . Seria
Theoretical m Parallel
Parallel 16 cores
o 10° Actual a s Serial
= Theoretical| S 1024 I Parallel
v [}
& &
10! 10% 4
8 core .
Serial: 49x cg e f s I mg sp ua

S L L

m‘ m‘ u\‘ ui‘ m‘ ui‘ m‘ m‘ m‘ w m‘ w

$ $ =2 € t < o ﬁ Qo Qo ko) [0}

¢ ¢ 2 5 s £ g g &g T 2 ¢ . 16 core .

st ¢ 8 5 4 8§ &8 8 ¢ § % E arallel: X . X

2 ) 2 o © ~ © S < < S < .

: d o © ~ o~ = © © ° N

m [sa) © © © 0 =4 ©

o o o m o

° s N & Parallel: 606x
2 .




Speedup

Theoretical Speedup comparison with BarrierPoint
SPEC CPU2017 with ref inputs, 8 threads, passive wait-policy

LoopPoint
B Serial
m Parallel

BarrierPoint
- Serial
B Parallel

Speedup

621.wrf s.1

644.nab_s.1

654.roms_s.1
657.xz_s.1
657.xz_s.2

—
2
o~
o
o
Qo
o
o
o

603.bwaves_s.1
603.bwaves_s.2
607.cactuBSSN_s.1
619.lbm_s.1
627.cam4 s.1
638.imagick_s.1
649.fotonik3d_s.1

BNUS

National University
of Singapore




Speedup

Theoretical Speedup comparison with BarrierPoint
SPEC CPU2017 with ref inputs, 8 threads, passive wait-policy

LoopPoint
B Serial
m Parallel

104

BarrierPoint
- Serial
B Parallel

103

102

Speedup

Serial: 244x

Up to 31000X Parallel: 11587x

s p e e d u p ! = ™ 3 = = ~ by = = by 3 ~ N
9] wn wn wn (9] (9] wn wn (9] wn wn wn wn
o o I | | | I o | I o o o
4] o z 1S t 3 S [®] g 3 € i i
> > a E=] 3 € o =) c ~ s ~ ~
& & @ s 2 S =3 @ < s = 0 0
2 ) 2 9 © ~ Q S o 2 o © ©
0 0 2 > © 5 o ©
© o © =
o o o 3] o))
© © ~ © <
o ©
©




Summary

e Contributions
= Methodology to sample generic multi-threaded workloads
= Uses application loops (barring spinloops) as the unit of work
= Flexible to be used for checkpoint-based simulation
e Accurate results in minimal time
= Average absolute error of 2.3% across applications
= Parallel speedup going up to 31,000 X
= Reduces simulation time from a few years to a few hours




More Information

* Links
= Artifact: https://github.com/nus—comparch/looppoint
= Page: https://looppoint.github.io
= Short talk: https://youtu.be/Tr609MkT42g

= Questions: alens@comp.nus.edu.sq, tcarlson@comp.nus.edu.sq

* Upcoming tutorial session > LoopPoint and ELFies
= |SCA 2022, New York City



https://github.com/nus-comparch/looppoint
https://looppoint.github.io/
https://youtu.be/Tr6O9MkT42g
mailto:alens@comp.nus.edu.sg
mailto:tcarlson@comp.nus.edu.sg

Agenda

12.20t0 13.00 Changxi Liu Running Sniper and LoopPoint Tools




LoopPoint and ELFies: Tools and Techniques to

Accelerate Simulations of Multi-threaded Applications
using Checkpointing

Alen Sabu!, Changxi Liu!, Akanksha Chaudhari', Harish Patil?,
Wim Heirman?, Trevor E. Carlson!

!National University of Singapore
2Intel Corporation

NUS

National University
of Singapore

intel

International Symposium on Performance Analysis of Systems and Software, May 22"9 2022, Singapore

BE &



Session 4

Sniper and LoopPoint Demo

CHANGXI LIU, PHD STUDENT
NATIONAL UNIVERSITY OF SINGAPORE

162



Simulator Design Waterfall

Cycle-accurate simulation High-level simulation Analytical models

Time

Accuracy

» Cycle-accurate simulation is too slow
* High-level simulation consider both accuracy and execution time




Sniper: A Fast and Accurate Simulator

Hybrid simulation approach
= Analytical interval core model : Interval Model

= Micro-architecture structure simulation
* Branch predictors, caches, etc.

e Support multi/many-cores simulation with parallel scales of core
number

* Pin-based frontend, can also support dynamoRIO
e Open source https://snipersim.org



https://snipersim.org/

Interval Model

Branch misprediction D-cache miss |-cache miss
A / l 1
O
o
I W - 1
- . b ) e i i
interval 1 interval 2 interval 3

* Split whole application into consecutive intervals

@ S.Eyerman et al, ACM TOCS, May 2009




Simulation in Sniper

Memory hierarchy @
simulator

Branch predictor @
simulator

<: > Functional simulator

<: Multiple,
single-threaded workloads

processor core

e Functional simulator as frontend
 |nterval models as backend

backend
frontend

inputs & binary




Directly Running Sniper

Download
= https://snipersim.org/w/Download

= Register to receive the link via email.

- External Email -

Dear Sniper downloader,
Here are your download instructions for the Sniper Multi-core Simulator.

For use with GIT, clone our repository from the following directory:

$ git clone http://snipersim.org/download /||| R oit/sniper.git

To download Sniper, use the following link or command:

http://snipersim.org/download/ | NN/ 2 k2ges/sniper-latest.tgz
$ wget http://snipersim.org/download /| packages/sniper-latest.tgz

If you have any questions, feel free to post them on our mailing list
http://groups.google.com/group/snipersim

or visit our Frequently Asked Questions page
http://snipersim.org/w/Frequently Asked Questions

The Sniper Simulator Team

National University
of Singapore



https://snipersim.org/w/Download

Directly Running Sniper

- External Email -

e Download
= https://snipersim.org/w/Download

Dear Sniper downloader,

Here are your download instructions for the Sniper Multi-core Simulator.

u Register to receive the Iink Via email_ For use with GIT, clone our repository from the following directory:

$ git clone http://snipersim.org/download /||| R oit/sniper.git

[ J i 1 i i To download Sniper, use the following link or command:
S I m u |at| ng a n a p pl Icat I O n http://snipersim.org/download/ | NN/ 2 k2ges/sniper-latest.tgz
- . / run—sn lpe r <o pt lo ns> —— / b ln / -L S $ wget http://snipersim.org/download /| packages/sniper-latest.tgz

If you have any questions, feel free to post them on our mailing list
http://groups.google.com/group/snipersim

or visit our Frequently Asked Questions page
http://snipersim.org/w/Frequently Asked Questions

The Sniper Simulator Team

TANUS

National University
of Singapore



https://snipersim.org/w/Download

Build LoopPoint

« Prerequisites
= X86-based Linux machine
= C++ with c++11 support
= Python
= Docker
= Snhiper link

@ [1] http://snipersim.org/<path-to-git-repo>.git




Build LoopPoint

« Opensource code
= https://github.com/nus-comparch/looppoint.git

@ [1] http://snipersim.org/<path-to-git-repo>.git



https://github.com/nus-comparch/looppoint.git

Build LoopPoint

- make build
= Build docker image “msticosows o

Building wheels for collected packages: tabulate
Building wheel for tabulate (setup.py): started
Building wheel for tabulate (setup.py): finished with status 'done’
Created wheel for tabulate: filename=tabulate-0.8.9-py2-none-any.whl size=33171 sha256=cc5713bdcee7e07c602619a643e2c3132e8e25d18308dc1d0fedbadef8bO3e12
Stored in directory: /tmp/pip-ephem-wheel-cache-N3SSxV/wheels/0a/4b/el/d0e504a346ed0882b93f971fe1122b9de64fabebdob1d81bof
Successfully built tabulate
Installing collected packages: tabulate
Successfully installed tabulate-0.8.9
Removing intermediate container ©4d7aece39fa
---> 98fe9327b5dc
Step 9/9 : RUN pip3 install --no-cache-dir --upgrade pip && pip3 install --no-cache-dir numpy
---> Running in 3b699c6d695a
Collecting pip
Downloading https://files.pythonhosted.org/packages/a4/6d/6463d49a933f547439d6b5b98b46af8742cc03ae83543e4d7688c2420f8b/pip-21.3.1-py3-none-any.whl (1.7MB)
Installing collected packages: pip
Found existing installation: pip 9.6.1
Not uninstalling pip at /usr/lib/python3/dist-packages, outside environment /usr
Successfully installed pip-21.3.1

Collecting numpy

Downloading numpy-1.19.5-cp36-cp36m-manylinux2010_x86_64.whl (14.8 MB)
Installing collected packages: numpy
Successfully installed numpy-1.19.5

Removing intermediate container 3b699c6d695a
---> 57f0a752ele6
[Warning] One or more build-args [TZ_ARG] were not consumed
Successfully built 57f0a752ele6
Successfully tagged ubuntu:18.04-looppoint

NUS

National University
of Singapore




Build LoopPoint

« make build
 make
= Run the docker image

I have no name!@ef5546e12134 |l spass/looppoint$ 1s
Dockerfile-ubuntu-18.04 README.md Lplib.py run-Llooppoint.py tools

Makefile apps preprocess suites.py
I have no name!@ef5546e12134 ||l srass/ Looppoint$ 0




Build LoopPoint

make build
make
make apps

Build the provided application
matrix-mul demo

I have no name!@ef5546e12134 | ispass/looppoint$ make apps

make -C apps/demo/matrix-omp

make[1]: Entering directory [N ispass/looppoint/apps/demo/matrix-omp
g++ -g -03 -fopenmp -0 matrix-omp matrix-omp-init.cpp matrix-omp.cpp -static
/usr/lib/gcc/x86_64-1inux-gnu/7/libgomp.a(target.o): In function “gomp_targe
(.text+0x8b): warning: Using 'dlopen' in statically linked applications requ
1n -s matrix-omp base.exe

make[1l]: Leaving directory _i.spass/looppoint/apps/demo/matrix-omp'
I have no name!@ef5546e12134 [ ispass/looppoint$ 1s
Dockerfile-ubuntu-18.04 Makefile README.md apps 1lplib.py preprocess ru
I have no name!@ef5546e12134 MMM -spass/looppoint$ find -name base.exe
./apps/demo/matrix-omp/base.exe

I have no name!@ef5546e12134 NN ispass/looppoint$ [l

You can find the source code of the demo in

« apps/demo/matrix—omp/

Coming soon: Support for open-source benchmarks (like NPB) with LoopPoint

TANUS

National University
of Singapore




Build LoopPoint

[CXX sift/recorder/obj-intel64/threads.o
[CXX sift/recorder/obj-intel64/papi.o

[CXX sift/recorder/obj-intel64/bbv_count.o
[CXX sift/recorder/obj-intel64/trace_rtn.o

sift/recorder/obj-intel64/recorder_base.o
sift/recorder/obj-intel64/pinboost_debug.o

[ [CXX
. ke build 5
m a e u l [CXX sift/recorder/obj-intel64/syscall _modeling.o

make[4]: Entering directory ss/Llooppoint/tools/sniper/sift/recorder/sift’

[CXX 1 sift/recorder/sift/sitt_reacer.o
) ma ke [CXX ] sift/recorder/sift/zfstream.o
[CXX 1 sift/recorder/sift/sift_utils.o
XX 1 sift/recorder/sift/sift_writer.o
[LD ] sift/recorder/sift/libsift.a
make[4]: Leaving directory |JEBBBEBBE s/ ooppoint/tools/sniper/sift/recorder/sift"
) ma ke a S [LD ] sift/recorder/obj-intel64/sift recorder
make[4]: Entering directory ass/looppoint/tools/sniper/sift/recorder’
make[4]: Leaving directory /looppoint/tools/sniper/sift/recorder’
make[4]: Entering directo Jpass/looppoint/tools/sniper/sift/recorder’
Y m k t -L N I P E R I T R E P — 1 make[4]: Leaving directory ss/looppoint/tools/sniper/sift/recorder’
a e 0 O S — make[4]: Entering directory ss/looppoint/tools/sniper/sift/recorder’
L L make[4]: Leaving directory s/looppoint/tools/sniper/sift/recorder’
make[4]: Entering directory] ss/Llooppoint/tools/sniper/sift/recorder’
- B . Id S . d L P . I make[4]: Leaving directory ss/looppoint/tools/sniper/sift/recorder’
make[4]: Entering directory ss/Llooppoint/tools/sniper/sift/recorder’
u I n I p e r a n OO p OI nt too S make[4]: Leaving directory s/looppoint/tools/sniper/sift/recorder’
make[3]: Leaving directory ss/looppoint/tools/sniper/sift/recorder’

make[2]: Leaving directory] ss/looppoint/tools/sniper/sift"

R e et B i i i i '
I have no name!@ef5546e12134:_spass/looppoints make tools SNIPER_GIT_REPO=http://snipersim.org/download/ _/git/sniper.git TSE:[Z]i E:::;z’{gng;;:::gglone - ass/looppoint/tools/sniper/standalone
Downloading Pin N :

--2022-05-17 07:34:17-- https://software. intel.com/sites/landingpage/pintool/downloads/pin-3.13-98189-g60a6e199-gcc - Linux. tar. gz EE)E(; } ::::g:}g:z;:;z:ﬁ::gz:g

Resolving software.intel.com (software.intel.com)... 23.15.96.37, 2600:1417:3f:791::b, 2600:1417:3f:78d::b [CXX ] standalone/standalone.o

Connecting to software.intel.com (software.intel.com)|23.15.96.37|:443... connected. [LD ] lib/sniper

HTTP request sent, awaiting response... 200 OK make[2]: Leaving directory M ispass/looppoint/tools/sniper/standalone’
Length: 35897895 (34M) [application/octet-stream] make[1]: Leaving directory | ispass/ looppoint/tools/sniper'

Saving to: 'STDOUT I have no name!@ef5546e12134 I spass/looppoints I

- 100%[ 1 34.23M 11.4MB/s in 3.0s

2022-05-17 07:34:20 (11.4 MB/s) - written to stdout [35897895/35897895]

patching file pin-3.13-98189-g60a6ef199-gcc-linux/source/tools/InstLib/alarms.H

patching file pin-3.13-98189-g60abef199-gcc-linux/source/tools/InstLib/alarms.cpp

Setting SNIPER_GIT_REPO as http://snipersim.org/download/ |/ it/ sniper.git to download Sniper
gloning into 'tools/sniper'...

NUS

National University
of Singapore

[1] http://snipersim.org/<path-to-git-repo>.git



Build LoopPoint

« Opensource code

«  We provide the script to help you build the environment
= make build
 Build docker image
= make
« Run docker image
= make apps
« Build the provided applications

= make tools SNIPER_GIT_REPO=[1]
« Build Sniper and LoopPoint tools

@ [1] http://snipersim.org/<path-to-git-repo>.git




Running LoopPoint

* Then run LoopPoint!
= ./run-looppoint.py —h
= Provides the information on how to run the tool
e Example run command
= ./run-looppoint.py —-p demo-matrix-1 -n 8 ——force




Running LoopPoint

 The driver script of LoopPoint
= Profiling the application




Running LoopPoint

 The driver script of LoopPoint

= Profiling the application
« make_mt_pinball : Generate whole-program pinball
« gen_dcfg : Generate DCFG file to identify loop information
« gen_bbv : Generate feature vector of each region
« gen_cluster : Cluster regions




PinPlay

 Makes Pin-based analyses repeatable.

e Command:

= $SDE_KIT/pinplay-scripts/sde_pinpoints.py ——mode mt —
cfg=$CFGFILE --log_options="-start_address main -log:fat
—log:basename $WPP_BASE” —-replay_options="-replay:strace" -1

* Generates a whole-program pinball for further profiling steps




DCFG

e A control-flow graph (CFG) is a fundamental structure

* A dynamic control-flow graph (DCFG) is a specialized CFG that adds
data from a specific execution of a program

« C++ DCFG APIs is conveniently to used for accessing the data.
= DCFG_LOOP_CONTAINER: :get_loop_ids
e Get the set of loop IDs

= DCFG_LOOP
« get_routine_id : get the function that the loop belongs to

« get_parent_loop_id : get the parent loop




DCFG

A control-flow graph (CFG) is a fundamental structure

A dynamic control-flow graph (DCFG) is a specialized CFG that adds
data from a specific execution of a program

C++ DCFG APIs is conveniently to used for accessing the data.

More APIls can be found in

» tools/sde-external-9.0.0-2021-11-07-1in/pinkit/sde—-example/include
 dcfg_api.H
« dcfg_pin_api.H
 dcfg_trace_api.H




DCFG

e Collect Loop Information

e Command:

$SDE_BUILD_KIT/pinplay-scripts/replay.py ——pintool=sde—-global-
looppoint.so ——pintool_options “—dcfg —-replay:deadlock_timeout
O -replay:strace —-dcfg:out_base_name $DCFG_BASE $WPP_BASE”

-dcfg : enable DCFG generation
DCFG_BASE : the DCFG file name that is generated




BBV

Profiling the feature vector of each region

Command:

$SDE_BUILD_KIT/pinplay-scripts/sde_pinpoints.py ——pintool="sde-global-looppoint.so"
——global_regions ——pccount_regions —-cfg $CFG ——whole_pgm_dir $WPP_DIR —--mode mt -S
$SLICESIZE -b -—-replay_options "-replay:deadlock_timeout @ -global_profile -
emit_vectors 0 -filter_exclude_lib 1libgomp.so.1l -filter_exclude_lib libiomp5.so -
looppoint:global_profile —-looppoint:dcfg-file $DCFG -looppoint:main_image_only 1 -
looppoint: loop_info $PROGRAM. $INPUT. loop_info.txt —flowcontrol:verbose 1 -
flowcontrol:quantum 1000000 —flowcontrol:maxthreads $NCORES”

—pccount_regions : (PC, count)-based region information
—looppoint: loop_info : Utilize loop information as the marker of each region
—flowcontrol:quantum : synchronize each thread every 1000000 instructions




Clustering

e Cluster all regions into several groups.
= SimPoint [1]
= Utilize feature vectors of all threads
= kmeans algorithm

@ [1] Sherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS 02



Clustering

e Cluster all regions into several groups.

e Command

$SDE_BUILD_KIT/pinplay-scripts/sde_pinpoints.py ——pintool="sde-
global-looppoint.so" --cfg $CFG --whole_pgm_dir $WPP_DIR -S
$SLICESIZE —--warmup_factor=2 -—-maxk=$MAXK —-—-append_status -s —-
simpoint_options="-dim $DIM -coveragePct 1.0 —maxK $MAXK”

DIM: The reduced dimension of the vector that BBVs are projected to
MAXK : Maximum number of clusters for kmeans




Running LoopPoint

The driver script of LoopPoint
= Profiling Final Results:

« matrix.1_16448.global.pinpoints.csv
« (start-pc, start-pc-count ), (end-pc, end-pc-count)

4 4
4

1
i
\ 1
\ 1
\‘ 1 4
1
\ 1 ’
\ 1
\ i
| 1
| i
% 1
| \
\ i
\
\ i

N,
N,
N,

A
3 # comment,thread-id,region-id,st‘qrt-pc, start-image-name,

4
4
'llstart-j.mage-offs'et, start-pc-count,end-pc/ end-image-name, end-image-offset, end-f
count, region-length, region-weight, region-multiplier, rdgion-type ! 4
4 \‘ 1
5 # RegionId = 1 Slice = 0 Icount = ‘Q

1
4
Length = 800000067 Wei'ght = 0.1}5'00 Multiplier = 1.000 ClugterSlicecount = 1 ClusterIcount = 800000066
6 #Start: pc : 0x400880 image: matrix-omp offset: 0x880 absolute_coyft: 1 source-info: matrix;émp.cpp:17
7 #End: pc : 0x4040c0 image: matrix=cfp-ofifset: 0x40c0 abso]l’;e:mﬁu’.:l77977888 relativ

/
of '
Y2 4

/ /

TANUS

National University
of Singapore




Running LoopPoint

 The driver script of LoopPoint

= Profiling Final Results:
« matrix.1_16448.global.pinpoints.csv
- (start-pc, start-pc-count ), (end-pc, end-pc-count)
« Cluster group id

P

w

# comment, thread-id, region-id,start-pc, start-image-name, start-image-offset, start-pc-count,end-pc, end-image-name, end-image-offset, end-f
count, region-length, region-weight, region-multiplier, region-type

# RegionId = 1 Slice = 0 Icount = 0 Length = 800000067 Weight = 0.12500 Multiplier = 1.000 ClusterSlicecount = 1 ClusterIcount = 800000066
#Start: pc : 0x400880 image: matrix-omp offset: 0x880 absolute_count: 1 source-info: matrix-omp.cpp:17

#End: pe-i) 0x4040cO image: matrix-omp offset: 0x40cO absolute_count: 77977888 relative_count: 9837476.0 source-info: matrix-omp.cpp:75
cluster:o From slice 0,globa1,1,0x400880,matrix-omp,9x880,1,0x4940c0,matrix-omp,0x40c0,77977888,9837476,800000067,0.12500,1.000,simu1atiol

YO N O WU A

TANUS

National University
of Singapore




Running LoopPoint

 The driver script of LoopPoint

= Profiling Final Results:
« matrix.1_16448.global.pinpoints.csv
- (start-pc, start-pc-count ), (end-pc, end-pc-count)
« Cluster group id
« Cluster multiplier

P

w

# comment, thread-id, region-id,start-pc, start-image-name, start-image-offset, start-pc-count,end-pc, end-image-name, end-image-offset, end-f
count, region-length, region-weight, region-multiplier, region-type

# RegionId = 1 Slice = 0 Icount = 0 Length = 800000067 Weight = 0.12500 Multiplier = 1.000 ClusterSlicecount = 1 ClusterIcount = 800000066
#Start: pc : 0x400880 image: matrix-omp offset: 0x880 absolute_count: 1 source-info: matrix-omp.cpp:17

#End: pc : 0x4040c0 image: matrix-omp offset: 0x40c0® absolute_count: 77977888 relative count: 9837476.0 source-info: matnax-omp cpp:75
cluster 0 from slice 0,global,1,0x400880,matrix-omp,0x880,1,0x4040c0,matrix-omp,0x40c0,77977888,9837476,800000067,0.12500 4 1 000}51mulatlol

YO N O WU A

188




Running LoopPoint

 The driver script of LoopPoint

= Profiling the application
« matrix.1_16448.global.pinpoints.csv

* Sampled Simulation : (start-pc, start-pc-count ), (end-pc,
end-pc—-count), cluster group id

e Extrapolation: cluster group id, cluster—-multiplier




Running LoopPoint

 The driver script of LoopPoint
= Profiling the application
= Sampled simulation of selected regions




* The LoopPoint support in Sniper

= Handle the beginning and ending of representative regions

‘VOID Handler(CONTROLLER::EVENT_TYPE ev, VOID * v, CONTEXT * ctxt
VOID * ip, THREADID tid, BOOL bcast)
q{
switch(ev)

lcase CONTROLLER: : EVENT_START:
= ThandleMagic(fid, Ttxt, STM CMD_USER, 0x0be0000f, 0);
break;

lcase CONTROLLER: : EVENT_STOP:
= TRandTeMagic(fid, TtxXt, SIM CMD_USER, 0x0be0000f, 1);
break;

default:
break;




* The LoopPoint support in Sniper

= Handle the beginning and ending of representative regions
= Register this function in pin

|

‘VOID Handler(CONTROLLER::EVENT_TYPE ev, VOID * v, CONTEXT * ctxt
VOID * ip, THREADID tid, BOOL bcast)
q{
. switch(ev)
{
case CONTROLLER: :EVENT_START:
handleMagic(tid, ctxt, SIM_CMD_USER, 0x0be0@000f, 0);
break;

case CONTROLLER: :EVENT_STOP:
handleMagic(tid, ctxt, SIM_CMD_USER, 0x0be0000f, 1);
break;

R R U R U g g  FEESSSSSSSsSsSSssssssss default:
Icontrol_manager.RegisterHandler(Handler, 0, FALSE); break;

:cont rol_manager.Activate();




* The LoopPoint support in Sniper
Handle the beginning and ending of representative regions

Register this function in pin

./run-sniper -n 8 —-gscheduler/type=static -cgainestown -
ssimuserroi --roi-script -——trace-—-args=-control
start:address:0x4069d0:count235036646:global ——trace-args=-control
stop:address:0x4069d0:count313177121:global —— <app cmd>

—control start:address:<PC>:<Count>
—control end:address:<PC>:<Count>

PC , Count :LoopPoint region boundaries




Running LoopPoint

 The driver script of LoopPoint
= Profiling the application
= Sampled simulation of selected regions
= Extrapolation of performance results




r

Extrapolation of Performance Result

Runtime of corresponding representative region : regionid
Multiply the ratio : multiplier

for regionid, multiplier in region _mult.iteritems{(}):
region_runtime = 0

continue

cov_mult_+= multiplier

extrapolated runtime += region_runtime * multiplier

sum_rep_runtime += region_runtime

"runtime') |
print('[LOOPPOINT] Warning: Skipping r%s as the simulation results are not available'’

<o

s regionid)

max_rep_runtime =

region_runtime

National University
of Singapore




Running LoopPoint

The driver script of LoopPoint
= Profiling the application
= Sampled simulation of selected regions

= Extrapolation of performance results

* Predicted runtime using sampled simulation

Fommm e L +ommmm- Fommmmmmm e Fommmmm - Fommmmme - +
| application | runtime | runtime | error | speedup | speedup | coverage |
| | actual (ns) | predicted (ns) | (%) | (parallel) | (serial) | (%) |
L L +-.-_-_--_- E A :l--+ ------- R R R +
| matrix-omp.1l | 214544900.0 | 1 199674000.01 | 6.93 | 8.34 | 4.24 | 100.0 |
ommmmmmmmm——— ommmm i ——— PR S N R B ¥ N K S Fommmmm Fommmmm Fommmmm +




Running LoopPoint

The driver script of LoopPoint
= Profiling the application
= Sampled simulation of selected regions
= Extrapolation of performance results
* Predicted runtime using sampled simulation

* The error rate of obtained using sampled simulation

Fommm e L +ommmm- Fommmmmmm e Fommmmm - Fommmmme - +
| application | runtime | runtime | error | speedup | speedup | coverage |
| | actual (ns) | predicted (ns) | (%) | (parallel) | (serial) | (%) |
Fommm e Fommmmmme e Fommm e e S ST T Fommmmmee - Fommmmmee- +
| matrix-omp.1l | 214544900.0 | 199674000.0 1'6.93 '] 8.34 | 4.24 | 100.0 |
Fommmmmmeeeeaa S Fommmm e R L L T T S -




Thank you!



LoopPoint and ELFies: Tools and Techniques to

Accelerate Simulations of Multi-threaded Applications
using Checkpointing

Alen Sabu!, Changxi Liu!, Akanksha Chaudhari', Harish Patil?,
Wim Heirman?, Trevor E. Carlson!

!National University of Singapore
2Intel Corporation

NUS

National University
of Singapore

intel

International Symposium on Performance Analysis of Systems and Software, May 22"9 2022, Singapore

BE &



