
LoopPoint and ELFies: Tools and Techniques to 
Accelerate Simulations of Multi-threaded Applications 

using Checkpointing

Alen Sabu1, Harish Patil2, Wim Heirman2, Trevor E. Carlson1
1National University of Singapore

2Intel Corporation

International Symposium on Computer Architecture, June 19th 2022, USA 



Agenda

1

Time Speaker Topic

13.20 to 13.30 Alen Sabu Overview of the tutorial

13.30 to 14.30 Harish Patil Tools & Methodologies: Pin, PinPlay, SDE, ELFies

14.30 to 15.00 Break

15.00 to 15.50 Wim Heirman Simulation with Sniper / Sniper 8.0 GitHub release

15.50 to 16.45 Alen Sabu Single-threaded and Multi-threaded Sampling, LoopPoint

16.45 to 17.30 Alen Sabu Running LoopPoint Tools



Agenda

2

Time Speaker Topic

13.20 to 13.30 Alen Sabu Overview of the tutorial

13.30 to 14.30 Harish Patil Tools & Methodologies: Pin, PinPlay, SDE, ELFies

14.30 to 15.00 Break

15.00 to 15.50 Wim Heirman Simulation with Sniper / Sniper 8.0 GitHub release

15.50 to 16.45 Alen Sabu Single-threaded and Multi-threaded Sampling, LoopPoint

16.45 to 17.30 Alen Sabu Running LoopPoint Tools



• Speaker: Harish Patil
§ Principal Engineer, Intel Corporation

• Topics Covered
§ Binary instrumentation using Pin or writing Pintools
§ PinPlay kit and PinPlay-enabled tools
§ SDE build kit for microarchitecture emulation
§ Checkpointing threaded applications using PinPlay, SDE
§ Detailed discussion on ELFies including its generation and usage

Tools from Intel

3



• Speaker: Wim Heirman
§ Principal Engineer, Intel Corporation

• Topics Covered
§ Architectural exploration and evaluation
§ Simulation as a tool for performance estimation
§ Methods for fast estimation using simulation
§ Overview of Sniper simulator
§ Sniper 8.0 features and public release

Simulation and Sampling Overview

4



• Speaker: Alen Sabu
§ PhD Candidate, National University of Singapore

• Topics Covered
§ Single-threaded sampled simulation techniques
§ Sampled simulation of multi-threaded applications
§ Existing methodologies and their drawbacks
§ Detailed discussion on LoopPoint methodology
§ Experimental results of LoopPoint

LoopPoint Methodology

5



• Speaker: Alen Sabu
§ PhD Candidate, National University of Singapore

• Topics Covered
§ High-level structure of LoopPoint code
§ Demo on how to use LoopPoint tools
§ Integrating workloads to run with LoopPoint

Simulation and Demo

6



Agenda

7

Time Speaker Topic

13.20 to 13.30 Alen Sabu Overview of the tutorial

13.30 to 14.30 Harish Patil Tools & Methodologies: Pin, PinPlay, SDE, ELFies

14.30 to 15.00 Break

15.00 to 15.50 Wim Heirman Simulation with Sniper / Sniper 8.0 GitHub release

15.50 to 16.45 Alen Sabu Single-threaded and Multi-threaded Sampling, LoopPoint

16.45 to 17.30 Alen Sabu Running LoopPoint Tools



LoopPoint and ELFies: Tools and Techniques to 
Accelerate Simulations of Multi-threaded Applications 

using Checkpointing

Alen Sabu1, Harish Patil2, Wim Heirman2, Trevor E. Carlson1
1National University of Singapore

2Intel Corporation

International Symposium on Computer Architecture, June 19th 2022, USA 



Tools and Methodologies
Session 1

HARISH PATIL, PRINCIPAL ENGINEER (DEVELOPMENT TOOLS SOFTWARE)
INTEL CORPORATION

9



http://pintool.intel.com

Pin: A Tool for Writing Program Analysis Tools

10

$ pin –t pintool –– test-program Normal output + 
Analysis output

counter++; print(IP)
sub $0xff, %edx
counter++; print(EA)
movl 0x8(%ebp), %eax
counter++;print(br_taken) 
jle <L1>

sub $0xff, %edx
movl 0x8(%ebp), %eax
jle <L1>

Pin
Test-program

Pintool

Extra code

Run-time 
Translator

Operating System

Hardware

http://pintool.intel.com/


http://pinplay.org

PinPlay: Software-based User-level Capture and 
Replay

11

No binaries/inputs
No application 
setup
No license 
checking

Input 

Program/
Libraries

License

Platforms : Linux, Windows, MacOS 

Upside : It works! Large OpenMP / MPI programs, Oracle

Downside : High run-time overhead: ~100-200X for capture è
Cannot be turned on all the time

Logger pinball
Replayer

+
Pintool

http://pinplay.org/


Pinball (single-threaded): 
Initial memory/register + injections

12

Replayer + Simulator

Internal states initialized

Arch. state

Initial 
memory 
image

foo.reg

foo.text

Sy
sc

al
l

A

Replay 50
instructions

RD
TS

C

Si
gn

al
 

100 250

Inject events: based on instruction counts
foo.sel / foo.reg 
(injections)

•System calls : skipped by injecting next rip/ memory changed
• CPUID, RDTSC : affected registers injected
• Signals/Callbacks : New register state injected



Pinball (multi-threaded): 
Pinball (single-threaded) + Thread-dependencies

13

foo.reg (per-thread)
Initial registers: 
T0

Initial registers: 
T1

Initial registers: 
T(n-1)

Application Memory (common)
foo.text

Event injection works only if same behavior 
(same instruction counts) is guaranteed  

during replay
foo.reg (per-thread)

foo.sel (per-thread)

foo.race (per-thread)

[T1] 2 T2 2
[T1] 3 T2 3

[T2] 5 T4 1

Thread T1 cannot execute instruction 2
until T2 executes instruction 2

Thread T2 cannot execute instruction 
5 until T4 executes instruction 1

MT Pinball ==  race-files provide determinism



14

ELFie : An Executable Application Checkpoint

• Checkpoint: Memory + Registers
• Application : Only program state captured  -- no 

OS or simulator states
• Executable :  In the Executable Linkage Format 

commonly used on Linux

Startup-
code

Application 
Memory

Arch. State 
(per thread)

User-specified 
code



15

pinball2elf: Pinball converter to ELF

pinball2elf

User-specified 
callbacks : per 

process and per-
thread

Memory 
image 
(.text)

Injections 
(.sel)

Arch. 
State 
(.reg)

Thread 
order 
(.race)

Startup-
code

Application 
Memory
Arch. 

State (per 
thread)

User-specified 
code

http://pinelfie.org

http://pinelfie.org/


Getting started with pinball2elf

16

Prerequisite: ‘perf’ installed on your Linux box (perf stat /bin/ls should work)
• Clone pinball2elf repository: git clone https://github.com/intel/pinball2elf.git
• cd pinball2elf/src
• make all
• cd ../examples/ST
• ./testST.sh

Tested : Ubuntu 20.04.4 LTS : gcc/g++ 7.5.0 and 9.4.0
and Ubuntu 18.04.6 LTS: gcc/g++ 7.5.0

Running ../../scripts//pinball2elf.basic.sh pinball.st/log_0
..
Running ../../scripts//pinball2elf.perf.sh pinball.st/log_0 st
export ELFIE_PERFLIST=0:0,0:1,1:1

…
hw_cpu_cycles:47272 hw_instructions:4951 sw_task_clock:224943 



ELFie types: basic, sim, perf

17

basic sim perf
How to create scripts/pinball2elf.ba

sic.sh pinball
scripts/pinball2elf.sim
.sh pinball

scripts/pinball2elf.perf.sh 
pinball perf.out

Exits gracefully? NO, either hangs or 
dumps core

NO, either hangs or 
dumps core
Simulator handles 
exit

YES, when retired instruction 
count reaches pinball icount

Environment 
variables used

NONE ELFIE_VERBOSE=0/1
ELFIE_COREBASE=X
Set affinity : thread 0 core 
X, thread 1 à core x+1

à

"ELFIE_WARMUP" to decide whether to 
use warmup
"ELFIE_PCCONT" to decide how to end 
warmup/simulation regions
ELFIE_PERFLIST, enables 
performance counting

Optional: Operating system state (SYSSTATE) per pinball: 
pintools/PinballSYSState [See CGO2021 ELFie paper]



Example: ELFIE_PERFLIST with a perf ELFie

18

ELFIE_PERFLIST, enables performance counting
(  based on /usr/include/linux/perf_event.h

perftype: 0 --> HW 1 --> SW
HW counter: 0 --> PERF_COUNT_HW_CPU_CYCLES
HW counter: 1 --> PERF_COUNT_HW_CPU_INSTRUCTIONS
SW counter: 0 --> PERF_COUNT_SW_CPU_CLOCK
... <see perf_event.h:'enum perf_hw_ids' and 'enum

perf_sw_ids') 
% cd examples/MT
% ../../scripts/pinball2elf.perf.sh pinball.mt/log_0 perf.out
% setenv ELFIE_PERFLIST "0:0,0:1,1:1“
% pinball.mt/log_0.perf.elfie
├── perf.out.0.perf.txt
├── perf.out.1.perf.txt
├── perf.out.2.perf.txt

ROI start: TSC 48051110586217756
Thread start: TSC 48051110623843452
------------------------------------------------
Simulation end: TSC 48051110625045322

Sim-end-icount 3436
hw_cpu_cycles:36148 hw_instructions:3476 
sw_task_clock:141901 
------------------------------------------------
Thread end: TSC 48051110625366502
ROI end: TSC 48051110625959364
hw_cpu_cycles:40097 hw_instructions:4455 
sw_task_clock:188637 



19

PinPoints == Pin + SimPoint

PinPoint 1: Weight 30% PinPoint 2: Weight 70%

Choose one simulation
point per phase…350 3518 …

1 2 1022 4232… …

Profile with a pin-based profiler Intervals :
30 million Instructions 

each

1 2 350 4232… … 3518
Find 
phases

Basic-block-vectors
Analyze with SimPoint

Program 
Execution

PinPoints



PinPoints : The repeatability challenge

20

Test-program

Test-program

Problem: Two runs are not exactly same à PinPoints missed (PC marker based)

[ “PinPoints out of order” “PinPoint End seen before Start” ] 
Found this for 25/54 SPEC2006 runs!

Profiler + SimPoint

PinPoints

Simulate



PinPlay provides repeatability

21

Test-program
PinPlay
Logger

Whole 
program 
pinball

Profiler + SimPoint

PinPoints

SimulateRegion
pinballs

PinPlay
Re-logger



1. University of California (San Diego), Intel Corporation, and Ghent 
University 
https://www.spec.org/cpu2006/research/simpoint.html

2. University of Texas at Austin 
https://www.spec.org/cpu2017/research/simpoint.html

3. Northwestern University
Public Release and Validation of SPEC CPU2017 PinPoints

Single-threaded PinPoints è SPEC2006/2017 
pinballs publicly available

22

https://www.spec.org/cpu2006/research/simpoint.html
https://www.spec.org/cpu2017/research/simpoint.html
https://arxiv.org/pdf/2112.06981


• Runs across different configurations are non-deterministic [Alameldeen’03]
• Locks are acquired in different order
• Unprotected shared-memory accesses

• One can’t compare two runs/simulations of the same benchmark directly
®Change in micro-architecture present/simulated or execution path 

taken?

Simulation of multi-threaded Programs: The 
non-determinism challenge

23

1.Alameldeen’03 Variability in Architectural Simulations of Multi-threaded Workloads (HPCA2003)



1. Run multiple simulations for each studied configuration [Alameldeen’03]
• Needs random perturbation for each run 
• Average behavior per configuration
• Cost: multiple runs

• 2. Force deterministic behavior so that one run in each configuration is performed [Pereira’08 
@ Intel ]

• Same execution paths 
• Cost: loss in fidelity, thread behavior tied to tracing machine

• 3. Simulate the same “amount of work” [Alameldeen’06] : LoopPoint approach

Dealing with non-determinism

24

A. Pereira’08: Reproducible Simulation of Multi-Threaded Workloads for Architecture Design Exploration, International 
Symposium on Workload Characterization (IISWC'08)

B. Alameldeen’06 IPC Considered Harmful for Multi-processors Workloads (IEEE-Micro-2006)



Why: Profiling should look only at ‘real work’
What: Skip profiling of synchronization code
How? 
• Automatically with Loop Analysis: Very hard

“Spin Detection Hardware for Improved Management of Multithreaded Systems” 
Transactions on Parallel and Distributed Systems, 2006
§ Look for loops that do not update architectural state
§ Was implemented in Sniper(Pin-2) but many OpenMP spin loops maintain stats hence 

do update architecture state
ü Heuristic

§ Filter synchronization library code: e.g. libiomp5.so, libpthread.so 

LoopPoint: Key idea 1: Filtering Synchronization 
Code during profiling

25



LoopPoint: Key idea 2: Loops as ‘Units of work’

26

Why: Property of program/binary : independent of architecture

1 2 102
2

… …

Profile with a SDE/DCFG-based profiler

Variable length intervals

Close to desired length : -sliceSize S 
Program 
Execution

Loop-entry KLoop-entry 1 Loop-entry N 

K N

Profiling

• Global counting of loop-entries
• Region start/stop : only in the main image

• Stop when ‘desired global instruction count’ (SliceSize) is reached
• Do not count instructions in synchronization library



DCFG Generation with PinPlay

27

Dynamic Control-Flow Graph (DCFG)
Directed graph extracted for a specific execution: 
Nodes è basic blocks 
Edges ècontrol-flow : augmented with per-thread execution counts

Record: … dcfg-driver 
-dcfg

pinball

DCFG JSON file

Replay: w/custom 
PinPlay tool using DCFG 

API



PinPlay + DCFG : Stronger Repeatability

28

Test-program
PinPlay

Logger + 
DCFG 

generation

Whole 
program 
pinball

LoopPoint Profiler +
SimPoint

PinPoints

DCFG JSON file

Invariant 
region 

markers

Computation loop 
entries
(NOT 

synchronization)



LoopPoint: Simulation alternatives

29

Sniper

Selective 
re-logging

Region 
pinball

PinPoints
file

Profile and find 
representative 

regions

Program
+

input

Whole-
program

pinball + DCFG

Requirement: Execution invariant region specification 
(PC+count for compute loop entries)

MT pinballs

pinball2elf

ELFie

GEM5

1. pinball-driven

2. ELFie-driven3. Binary-driven



Intel Software Development Emulator (Intel SDE)

30

• The Intel® Software Development Emulator is a functional user-
level (ring 3) emulator for x86 (32b and 64b) new instructions built 

upon Pin and XED (X86 encoder/decoder)
• Goal: New instruction/register emulation between the time when 

they are designed and when the hardware is available. 
• Used for compiler development, architecture and workload analysis, 

and tracing for architecture simulators
• No special compilation required
• Supported on Windows/Linux/Mac OS
• Runs only in user space (ring 3)



How SDE Works

31

• Based on Pin (http://pintool.intel.com )  and
XED decoder/encoder 
(https://github.com/intelxed/xed )

• Instrument new instructions

– Add call to emulation routine

– Delete original instruction

• Emulation routine:

– Update native state with emulated state

http://www.intel.com/software/sde

N O NO N NO O O

SDE emulation 
functions

New instruction
Legacy instruction

Host state Emulated 
state

http://pintool.intel.com/
https://github.com/intelxed/xed
http://www.intel.com/software/sde


Prerequisites:
1. SDE build kit (version 9.0 or higher) from Intel

http://www.intel.com/software/sde
2. pinplay-tools from Intel 

https://github.com/intel/pinplay-tools
3. SimPoint sources from UCSD

https://cseweb.ucsd.edu/~calder/simpoint/
4. Pinball2elf sources from Intel

http://pinelfie.org à https://github.com/intel/pinball2elf

Using SDE for PinPoints and LoopPoint

32

http://www.intel.com/software/sde
https://github.com/intel/pinplay-tools
https://cseweb.ucsd.edu/~calder/simpoint/
http://pinelfie.org/
https://github.com/intel/pinball2elf


1. Expand SDE build-kit : setenv SDE_BUILD_KIT<path to SDE kit>
2. cp –r pinplay-tools/pinplay-scripts $ SDE_BUILD_KIT
3. Build simpoint (see pinplay-tools/pinplay-

scripts/README.simpoint)
• cp <path>/SimPoint.3.2/bin/simpoint $ SDE_BUILD_KIT/pinplay-

scripts/PinPointsHome/Linux/bin/
4. Build global looppoint tools

§ setenv PINBALL2ELF <path to pinball2lef repo>
§ cd pinplay-tools/GlobalLoopPoint
§ ./sde-build-GlobalLoopPoint.sh

Getting ready for LoopPoint …

33



SDE kit expanded for LoopPoint

34

sde-external-9.0.0-2021-11-07-lin
├── …
├── intel64

├── sde-global-event-icounter.so
├── sde-global-looppoint.so

├── …
└── pinplay-scripts

PinPointsHome/
└── Linux
└── bin
├── LICENSE.simpoint
├── simpoint



• cd pinplay-tools/dotproduct-omp # see README there
• make # builds dotproduct-omp à base.exe
• ./sde-run.looppoint.global_looppoint.concat.filter.flowcontrol.sh

~/pinplay-tools/dotproduct-omp
├── dotproduct.1_282016.Data
├── dotproduct.1_282016.pp
└── whole_program.1

Create LoopPoint region pinballs and replay them

Running LoopPoint for an OpenMP program 

35

bbv files (*.bb), PinPoints
file(*.csv, *.CSV)

Region pinballs

Whole-program pinball + DCFG



Summary: Simulation of Multi-threaded Programs: 
Tools & Methodologies

36

1. Pinball-driven
2. ELFie-driven
3. Binary-driven

SDE + LoopPoint
Compute-loop iterations as 

`Unit of work’

1. Simulation (Sniper) -based
2.ELFie-based / Binary+ROIPerf (not covered)

Whole-program performance vs
Region-predicted performance

Where to simulate?

Are the regions representative?

How to simulate?



Agenda

37

Time Speaker Topic

13.20 to 13.30 Alen Sabu Overview of the tutorial

13.30 to 14.30 Harish Patil Tools & Methodologies: Pin, PinPlay, SDE, ELFies

14.30 to 15.00 Break

15.00 to 15.50 Wim Heirman Simulation with Sniper / Sniper 8.0 GitHub release

15.50 to 16.45 Alen Sabu Single-threaded and Multi-threaded Sampling, LoopPoint

16.45 to 17.30 Alen Sabu Running LoopPoint Tools



LoopPoint and ELFies: Tools and Techniques to 
Accelerate Simulations of Multi-threaded Applications 

using Checkpointing

Alen Sabu1, Harish Patil2, Wim Heirman2, Trevor E. Carlson1
1National University of Singapore

2Intel Corporation

International Symposium on Computer Architecture, June 19th 2022, USA 



Simulation with Sniper / 
Sniper 8.0 GitHub release

Session 2

WIM HEIRMAN, PRINCIPAL ENGINEER (EXTREME SCALE COMPUTING)
INTEL CORPORATION

39



Source: https://www.intel.com

Architectural Trends in Processor Design

40

Fig. 1: Moore Law number of transistor per device: past, present, future 
[Intel]

• Moore’s Law predicts that 
the number of transistors 
per device will double 
every two years.

• First microprocessor had 
2200 transistors – Intel 
aspiring to have 1 trillion 
transistors by 2030.



Source: https://www.intel.com/

Architectural Trends in Processor Design

41

Fig. 2: Transistor innovations over time

Main Goal: Meeting the  ever-
increasing computational 
demands while adhering to 
stringent non-functional 
requirements (ex: size, power)!



• Architecture is rapidly evolving domain with a lot of new research directions.

• A plethora of design choices are available:
§ Ranging from the choice of components, the choice of operating modes of each 

component, the choice of interconnects used, the choice of algorithms employed, etc.

• The process of exploration and evaluation of new ideas is often complex and time-
consuming.

Exploration and Evaluation of New Ideas

42



Exploration and Evaluation of New Ideas

43

Whoa! So many 
ideas… Which 
one do I pick?!

Idea #1

Idea #2

Oh, just 
pick the 

BEST one.

Idea #3
…

Idea #73969218!

…

Idea #96736

The best Idea

Idea #96738

Architect #1 Architect #2

Cool



Exploration and Evaluation of New Ideas

44

The Architect IRL

The Important Question:

So how do we then explore new ideas quickly and 
evaluate them accurately to find the BEST idea?

zzz…



The Architect’s Tools – Design Waterfall

45

Analytical models

Cycle-accurate 
simulation

#
 a

rc
hi

te
ct

ur
es

co
ns

id
er

ed
1010 105

1000
10 1

design process (time)

be
nc

hm
ar

ks
/a

pp
lic

at
io

ns

Program characteristics

Traces /
Microbenchmarks

Pre-silicon software
optimization, 

co-design

High-level simulation

Representative 
applications



Fast or accurate?

46

RTL simulators

Architectural sim.

10% 0%

Sniper

50%

1,000 x

1,000 x



Fast or Accurate Simulation?

47

pe
rfo

rm
an

ce

architecture/
software version

A B C D E

? ??

Cycle-accurate simulator

pe
rfo

rm
an

ce

A B C D E

Higher-abstraction level
simulator

architecture/
software version



Fast or Accurate Simulation?

48



• Integrated
• Complex, incl. wrong-path, races

• Functional-first
• Trace-driven, or timing feedback

• Timing-directed, timing-first
• Step & verify

Simulator taxonomy

49

Timing and functional 
simulator

Functional 
simulator

Timing 
simulator

Timing 
simulator

Functional 
simulator

Mauer, Hill & Wood. Full-System Timing-First Simulation. SIGMETRICS 2002



• August 2010: Sniper forked from MIT Graphite
• November 2011: SC’11 paper, first public release
• Today:

§ Interval and Instruction-window-centric core models
§ 7000+ downloads from 100+ countries
§ Active mailing list
§ 1200+ citations (SC’11 & TACO’12 papers)

Sniper History

50

snipersim.org downloads by quarter



• Functional-first
• Build on production-quality functional simulator / instrumentation tool

• Pin/SDE, Simics, SAE [x86], Spike, rv8 [RISC-V]
• 99/1 rule: 99% of instructions must be correct to get failure rate <1%

• Extensible timing model
• 1/99 rule: modeling 1% of the ISA is enough to capture 99% of performance trends
• Easy to defeature / sweep accuracy

• From 1-IPC (fast, just counting instructions)…
• …to near-cycle-accurate
• Perfect / oracle simulation (perfect caches, perfect branches, etc.)

• Timing feedback
• Multi-core, relative progress must be sync’d back to functional for e.g. load balancing

Functional-first with timing feedback

51



Simulation in Sniper

52

functional
simulator 

(Pin)
memory hierarchy

simulator

branch predictor
simulator

processor cores

A single-process,
multithreaded
workload (v1.0)

Multiple,
single-threaded
workloads (v2.0)

Execution-driven simulation

Trace-driven simulation



Simulation in Sniper with SIFT

53

memory
hierarchy
simulator

processor cores

Functional-first simulation + timing-feedback

Pin

...

A bi-directional 
single-thread

SIFT connection

PinPlay

Pin
+SDE



$ run-sniper -c gainestown --roi -- ./test/fft/fft -p2
[SNIPER] Start
[SNIPER] --------------------------------------------------------------------------------
[SNIPER] Sniper using Pin frontend
[SNIPER] Running pre-ROI region in  CACHE_ONLY mode
[SNIPER] Running application ROI in DETAILED mode
[SNIPER] Running post-ROI region in FAST_FORWARD mode
[SNIPER] --------------------------------------------------------------------------------

FFT with Blocking Transpose
1024 Complex Doubles
2 Processors

[SNIPER] Enabling performance models
[SNIPER] Setting instrumentation mode to DETAILED
[SNIPER] Disabling performance models
[SNIPER] Leaving ROI after 2.08 seconds
[SNIPER] Simulated 1.1M instructions, 0.9M cycles, 1.22 IPC
[SNIPER] Simulation speed 545.5 KIPS (272.8 KIPS / target core - 3666.2ns/instr)
[SNIPER] Setting instrumentation mode to FAST_FORWARD

PROCESS STATISTICS
...
[SNIPER] End
[SNIPER] Elapsed time: 5.97 seconds

Running Sniper

54

Configuration Region of interest markers in codeWorkload command line



sim.out: Quick overview of basic performance results

Simulation results

55

| Core 0     | Core 1    
Instructions                       |     506505 |     505562
Cycles                             |     469101 |     468620
Time (ns)                          |     176354 |     176173

Branch predictor stats               |            |           
num incorrect                      |       1280 |       1218
misprediction rate                 |      7.70% |      7.42%
mpki |       2.53 |       2.41

Cache Summary                        |            |           
Cache L1-I                         |            |           
num cache accesses               |      46642 |      46555
num cache misses                 |        217 |        178
miss rate                        |      0.47% |      0.38%
mpki |       0.43 |       0.35

Cache L1-D                         |            |           
num cache accesses               |     332771 |     332412
num cache misses                 |        517 |        720
miss rate                        |      0.16% |      0.22%
mpki |       1.02 |       1.42

Cache L2                           |            |           
num cache accesses               |        984 |       1090
num cache misses                 |        459 |        853



• Where did my cycles go?
§ Cycles/time per instruction
§ Broken up in components

• Base: ideal execution, no bottlenecks
• Add “lost” cycles do to each HW structure

§ Normalize by either
• Number of instructions (CPI stack)
• Execution time (time stack)

• Different from miss rates: 
cycle stacks directly quantify the effect on performance

• (Also: top-down analysis in VTune)

Cycle stacks

56

CPI

DRAM
I-cache
Branch
Base



• Miss rate x latency overestimates penalty
• Ignores overlap with compute, indep. memory accesses
• Can lead to wrong conclusions / useless optimization

• CPI stack takes overlap into account

Miss rates vs. CPI stacks

57

Long-latency load

Long-latency loadI I I
I I I I I I I

time

stall

D

dependent ins.

cpi.base cpi.basecpi.memory

D D D D D



• Cycle stacks through time

Advanced visualization

58



Hardware
• 2011: Ask architects for 

a new FLOPS 
performance counter

• 2014: Haswell: broken…
• 2017: Skylake: success!

Simulator

$ git diff

void Core::init()

+   registerMetric(“core”, _id, “flops”, &flops);

void Core::doCommit(MicroOp &uop)

+   flops += uop.fp_operations();

$ make

$ run-sniper -- ./my_app

$ dumpstats | grep flops

core.0.flops 123456

core.1.flops 234567

Improved visibility vs. hardware

59



• New in Sniper 8.0 release:
§ Support for Intel SDE in addition to Intel Pin (emulation)
§ License now allows for redistribution of Sniper (also Pin, SDE) in 

Docker containers, artifacts, …
§ Available on GitHub: https://github.com/snipersim/snipersim

Sniper 8.0 release on GitHub

60

https://github.com/snipersim/snipersim


Agenda

61

Time Speaker Topic

13.20 to 13.30 Alen Sabu Overview of the tutorial

13.30 to 14.30 Harish Patil Tools & Methodologies: Pin, PinPlay, SDE, ELFies

14.30 to 15.00 Break

15.00 to 15.50 Wim Heirman Simulation with Sniper / Sniper 8.0 GitHub release

15.50 to 16.45 Alen Sabu Single-threaded and Multi-threaded Sampling, LoopPoint

16.45 to 17.30 Alen Sabu Running LoopPoint Tools



LoopPoint and ELFies: Tools and Techniques to 
Accelerate Simulations of Multi-threaded Applications 

using Checkpointing

Alen Sabu1, Harish Patil2, Wim Heirman2, Trevor E. Carlson1
1National University of Singapore

2Intel Corporation

International Symposium on Computer Architecture, June 19th 2022, USA 



Sampled Simulation and LoopPoint
Session 3

ALEN SABU, PHD CANDIDATE
NATIONAL UNIVERSITY OF SINGAPORE

63



• Partial simulation and extrapolation
§ Simulating the first 1 billion instructions in detail.

§ Fast-forwarding to skip the initialization phase and then simulating 1 billion 
instructions in detail.

§ Fast-forwarding to skip the initialization phase, microarchitectural state 
warming, and then simulating the 1 billion instructions in detail

Techniques to Simulate Faster

64

Fast-forwarding using 
Functional simulation

Detailed simulation

Warming up the 
microarchitectural state



• Workload reduction
§ Simulating for reduced input sets
§ Simulating for reduced loop counts in workloads

Techniques to Simulate Faster

65



• Workload reduction
§ Simulating for reduced input sets
§ Simulating for reduced loop counts in workloads

• Problems with these techniques:

Techniques to Simulate Faster

66



• Workload reduction
§ Simulating for reduced input sets
§ Simulating for reduced loop counts in workloads

• Problems with these techniques:
§ [Partial simulation + extrapolation] à fail to capture global variations in program 

behavior and performance.

Techniques to Simulate Faster

67



• Workload reduction
§ Simulating for reduced input sets
§ Simulating for reduced loop counts in workloads

• Problems with these techniques:
§ [Partial simulation + extrapolation] à fail to capture global variations in program 

behavior and performance.

§ [Workload reduction] à benchmark behavior varies significantly across several inputs 
à do not reflect the actual performance. 

Techniques to Simulate Faster

68



• Sampling enables the simulation of selective representative regions
§ Representative regions: subset of regions in the application that reflect the behavior of 

the entire system when extrapolated

• How to select these “representative regions”?
§ Targeted sampling (like in SimPoint)

§ Statistical sampling (like in SMARTS)

Sampled Simulation to the Rescue!

69

(Full) program execution

Representative regions



• Large-scale program behaviors vary significantly over their run times.
§ Difficult to estimate performance using previously discussed techniques.

• Main idea behind SimPoint:
§ Automatically & efficiently analyzing program behavior over different phases of execution.

• SimPoint uses Basic Block Vectors (BBV) as a hardware-independent metric for 
characterizing the program behavior in different phases.

Sampled Simulation Techniques: SimPoint

70

…..
__

L1 data cache miss rate

Instructions Per Cycle



Sampled Simulation Techniques: SimPoint

71

• How SimPoint works:

§ STEP 1: Basic block profiling 
• Generating the Basic Block Vectors 

§ STEP 2: Clustering of Basic Block Vectors
• Random Projection
• K-means Clustering

§ STEP 3: Identifying representative regions



Sampled Simulation Techniques: SimPoint

72

• How SimPoint works:

§ STEP 1: Basic block profiling 
• Generating the Basic Block Vectors 

§ STEP 2: Clustering of Basic Block Vectors
• Random Projection
• K-means Clustering

§ STEP 3: Identifying representative regions



A Basic Block Vector (BBV) is a single-dimensional array that maintains a count of how 
many times each basic block was executed in each interval

Sampled Simulation Techniques: SimPoint

73

BB0
BB1

BB2
BB4 BB5BB3

Basic Block: A section of 
code that has a single 
point of entry and a 
single point of exit.

1 1 0 1 55

BB6

1

5 iterations

0 1 432 5 6

LOOP!

BRANCH

Basic Block Vector:

Indexed by Basic Block IDs

Maintains the execution count for 
each Basic Block

BB0



Sampled Simulation Techniques: SimPoint

74

• How SimPoint works:

§ STEP 1: Basic block profiling 
• Generating the Basic Block Vectors 

§ STEP 2: Clustering of Basic Block Vectors
• Random Projection
• K-means Clustering

§ STEP 3: Identifying representative regions



Sampled Simulation Techniques: SimPoint

75

• How SimPoint works:

§ STEP 1: Basic block profiling 
• Generating the Basic Block Vectors 

§ STEP 2: Clustering of Basic Block Vectors
• Random Projection
• K-means Clustering

§ STEP 3: Identifying representative regions



• The Basic Block Vectors obtained from the basic block profiling step have a very large number 
of dimensions! (in the range of 2,000 -- 100,000)

• “Curse of dimensionality”:
§ Hard to cluster data as the number of dimensions increases.
§ Clustering time increases significantly wrt as the number of 

dimensions increases.

• Solution: Reduce the number of dimensions to 15 
using Random Linear Projections.

Sampled Simulation Techniques: SimPoint

76



Sampled Simulation Techniques: SimPoint

77

• How SimPoint works:

§ STEP 1: Basic block profiling 
• Generating the Basic Block Vectors 

§ STEP 2: Clustering of Basic Block Vectors
• Random Projection
• K-means Clustering

§ STEP 3: Identifying representative regions



K-means clustering:

• Initialize k cluster centers by randomly choosing k points from the data.

• Repeat until convergence:
§ Do for all data points:

• Compare the distance from all k cluster centers.
• Assign it to the cluster with the closest center.

§ Update cluster center to the centroid of the newly 
assigned memberships.

Choosing k: The clustering that achieves a BIC1 score that is at least 90% of the 
spread between the largest and smallest BIC score is chosen.

1Bayesian Information Criterion

Sampled Simulation Techniques: SimPoint

78



Sampled Simulation Techniques: SimPoint

79

• How SimPoint works:

§ STEP 1: Basic block profiling 
• Generating the Basic Block Vectors 

§ STEP 2: Clustering of Basic Block Vectors
• Random Projection
• K-means Clustering

§ STEP 3: Identifying representative regions



• Representative region à single simulation point
§ BBV with the lowest distance from the centroid of all cluster centers.

• Representative regions à multiple simulation points
§ For each cluster, choose the BBV that is closest to the centroid of the cluster.

Sampled Simulation Techniques: SimPoint

80



• Main idea behind SMARTS:
§ Using systematic sampling:

• To identify a minimal but representative sample from the population for 
microarchitecture simulation

• To establish a confidence level for the error on sample estimates
§ Simulating using two modes :

• Detailed simulation of sampled instructions à accounting for all the 
microarchitectural details.

• Functional simulation of remaining instructions à accounting only for the  
programmer-visible architectural states (ex: registers, memory). 

Sampled Simulation Techniques: SMARTS

81



• SMARTS uses Systematic Sampling:

Sampled Simulation Techniques: SMARTS

82

Sample at a fixed interval 
of length k units or k x U 

instructions, where
k = N / n

Start sampling
at offset j

Each unit 
consists of U
instructions

Total sample size:
n = N/k units

OR
n x U = n x N/k instructions  



• Simulation:

Sampled Simulation Techniques: SMARTS

83

U instructions are measured as a
sampling unit using detailed 

simulation

W instructions of detailed
simulation warm state before

each sampling unit

U(k -1) – W instructions are 
functionally simulated and large

structures may be warmed

Values of U and W 
depend on workload 

characteristics



• Evaluation results:

§ Average error: 
• 0.64% for CPI
• 0.59% for EPI

§ Speedup over full-stream simulation: 
• 35x for 8-way out-of-order processors
• 60x for 16-way out-of-order processors

Sampled Simulation Techniques: SMARTS

84

By simulating fewer than 50 million 
instructions in detail per benchmark.



Simulation in the Post-Dennard Era

85

Intel's Alder Lake die shot. 
Image source: WikiChip

• Modern architectures require smarter simulators
• Microarchitectural simulation is slow

§ NPB (D), SPEC CPU2017 (ref) can take years
§ Solution – Simulate representative sample



Simulation in the Post-Dennard Era

86

Benchmarks with 8 threads, static schedule, 
passive wait-policy, simulated at 100 KIPS.

• Modern architectures require smarter simulators
• Microarchitectural simulation is slow

§ NPB (D), SPEC CPU2017 (ref) can take years
§ Solution – Simulate representative sample



Simulation in the Post-Dennard Era

87

Benchmarks with 8 threads, static schedule, 
passive wait-policy, simulated at 100 KIPS.

• Modern architectures require smarter simulators
• Microarchitectural simulation is slow

§ NPB (D), SPEC CPU2017 (ref) can take years
§ Solution – Simulate representative sample

Can we further bring 
down simulation time



Simulation in the Post-Dennard Era

88

Benchmarks with 8 threads, static schedule, 
passive wait-policy, simulated at 100 KIPS.

• Modern architectures require smarter simulators
• Microarchitectural simulation is slow

§ NPB (D), SPEC CPU2017 (ref) can take years
§ Solution – Simulate representative sample

Can we further bring 
down simulation time



• SimPoint or SMARTS ➣ Instruction count-based techniques
§ Works well for single-threaded applications

Extending Single-threaded Techniques

89

a b c d e

time

100M
ins

100M
ins

100M
ins

100M
ins

100M
ins

Simulation run 1



• SimPoint or SMARTS ➣ Instruction count-based techniques
§ Works well for single-threaded applications

Extending Single-threaded Techniques

90

a b c d e

time

100M
ins

100M
ins

100M
ins

100M
ins

100M
ins

Simulation run 1

a b c d e

time

100M
ins

100M
ins

100M
ins

100M
ins

100M
ins

Simulation run 2



• SimPoint or SMARTS➣ Instruction count-based techniques
§ Inconsistent regions for multi-threaded applications

Extending Single-threaded Techniques

91

u v w x y

time

100M
ins

100M
ins

100M
ins

100M
ins

100M
ins

Simulation run 1

a b c dT0

T1

e



• SimPoint or SMARTS➣ Instruction count-based techniques
§ Inconsistent regions for multi-threaded applications

Extending Single-threaded Techniques

92

u v w x y

time

100M
ins

100M
ins

100M
ins

100M
ins

100M
ins

Simulation run 1

u v w x y

time

100M
ins

100M
ins

100M
ins

100M
ins

100M
ins

Simulation run 2

a b c dT0

T1

e a b c d e



1Alameldeen et al., “IPC Considered Harmful for Multiprocessor Workloads”, IEEE Micro 2006

Multi-threaded Sampling is Complex

93

Instruction count-based 
techniques are unsuitable1

Threads progress differently 
due to load imbalance

Representing parallelism 
among threads

Differentiating thread 
waiting from real work



1Alameldeen et al., “IPC Considered Harmful for Multiprocessor Workloads”, IEEE Micro 2006

Multi-threaded Sampling is Complex

94

Instruction count-based 
techniques are unsuitable1

Threads progress differently 
due to load imbalance

Representing parallelism 
among threads

Differentiating thread 
waiting from real work

Identify a unit of work that is invariant across executions



FlexPoints

Wenisch et al., “SimFlex: statistical sampling of computer system simulation”, IEEE Micro’06

Multi-threaded Sampling: Prior works

95

Assumes no thread interaction

Designed for non-synchronizing throughput workloads

Requires simulation of the full application

Instruction count-based sampling



Time-based Sampling

Carlson et al., “Sampled Simulation of Multithreaded Applications”, ISPASS’13
Ardestani et al., "ESESC: A fast multicore simulator using time-based sampling." HPCA, 2013

Multi-threaded Sampling: Prior works

96

Extremely slow

Designed for synchronizing generic multi-threaded workloads

Requires simulation of the full application

Applies to generic multi-threaded workloads



BarrierPoint

Carlson et al., ”BarrierPoint: Sampled simulation of multi-threaded applications”, ISPASS’14

Multi-threaded Sampling: Prior works

97

Slow when inter-barrier regions are large

Designed for barrier-synchronized multi-threaded workloads

Scales well with number of barriers

u v

a b

Ba
rr

ie
r

w

c

Ba
rr

ie
rT0

T1



TaskPoint

Grass et al., “TaskPoint: Sampled simulation of task-based programs”, ISPASS’16

Multi-threaded Sampling: Prior works

98

Works only for the particular workload type

Designed for task-based workloads

Uses analytical models to improve accuracy



SimPoint1

SMARTS2

4Carlson et al., “Sampled Simulation of Multithreaded Applications”, ISPASS’13
5Carlson et al., ”BarrierPoint: Sampled simulation of multi-threaded applications”, ISPASS’14
6Grass et al., “TaskPoint: Sampled simulation of task-based programs”, ISPASS’16

The Unit of Work

99

1Sherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS’02
2Wunderlich et al., “SMARTS: Accelerating Microarchitecture Simulation via Rigorous Statistical Sampling”, ISCA’03
3Wenisch et al., “SimFlex: statistical sampling of computer system simulation”, IEEE Micro’06

Flex Points3

Extremely Slow
BarrierPoint5 

TaskPoint6

Multiprocessor Sampling

Application-specific Sampling

Single-threaded Sampling

Time-based sampling4

Multi-threaded Sampling

Instruction count Instruction count

Time
Inter-barrier regions

Task instances



SimPoint1

SMARTS2

4Carlson et al., “Sampled Simulation of Multithreaded Applications”, ISPASS’13
5Carlson et al., ”BarrierPoint: Sampled simulation of multi-threaded applications”, ISPASS’14
6Grass et al., “TaskPoint: Sampled simulation of task-based programs”, ISPASS’16

The Unit of Work

100

1Sherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS’02
2Wunderlich et al., “SMARTS: Accelerating Microarchitecture Simulation via Rigorous Statistical Sampling”, ISCA’03
3Wenisch et al., “SimFlex: statistical sampling of computer system simulation”, IEEE Micro’06

Flex Points3

Extremely Slow
BarrierPoint5 

TaskPoint6

Multiprocessor Sampling

Application-specific Sampling

Single-threaded Sampling

Time-based sampling4

Multi-threaded Sampling

Instruction count Instruction count

Time
Inter-barrier regions

Task instances

We consider generic loop iterations as the unit of work



Overall Methodology

101

Where to simulate

How to simulate



Overall Methodology

102

How to simulate

W
he

re
 to

 si
m

ul
at

e

1. Loop-based 
Profiling

Program 
binary, inputs



Overall Methodology

103

How to simulate

W
he

re
 to

 si
m

ul
at

e

2. Region 
Analysis and 

Clustering

1. Loop-based 
Profiling

Program 
binary, inputs



Overall Methodology

104

How to simulate

W
he

re
 to

 si
m

ul
at

e

2. Region 
Analysis and 

Clustering

1. Loop-based 
Profiling

Program 
binary, inputs

Looppoints 
Specification



Overall Methodology

105

W
he

re
 to

 si
m

ul
at

e

2. Region 
Analysis and 

Clustering

1. Loop-based 
Profiling

3. Checkpoints 
Generation

H
ow

 to
 si

m
ul

at
e

Program 
binary, inputs

Looppoints 
Specification



Overall Methodology

106

W
he

re
 to

 si
m

ul
at

e

2. Region 
Analysis and 

Clustering

1. Loop-based 
Profiling

4. (Warmup +) 
Detailed Region 

Simulation

3. Checkpoints 
Generation

Checkpoint
driven

H
ow

 to
 si

m
ul

at
e

Region 
Checkpoints

Program 
binary, inputs

Looppoints 
Specification



Overall Methodology

107

W
he

re
 to

 si
m

ul
at

e

2. Region 
Analysis and 

Clustering

1. Loop-based 
Profiling

4. (Warmup +) 
Detailed Region 

Simulation

3. Checkpoints 
Generation

Checkpoint
driven

Binary driven

H
ow

 to
 si

m
ul

at
e

5. Performance 
Extrapolation

Region 
Checkpoints

Program 
binary, inputs

Looppoints 
Specification



1DCFG: Dynamic Control-Flow Graph

Loop-based Profiling

108



1DCFG: Dynamic Control-Flow Graph

Loop-based Profiling

109

1. Loop-based 
Profiling

1. Loop-based 
Profiling



1DCFG: Dynamic Control-Flow Graph

Loop-based Profiling

110

DCFG1

Generation

Application 
Execution 
Recording

1. Loop-based 
Profiling

1. Loop-based 
Profiling

Synchronization
Filtering

Slice Generation
(PC, count)

Flow-control



1DCFG: Dynamic Control-Flow Graph

Loop-based Profiling

111

DCFG1

Generation

Application 
Execution 
Recording

Vector 
Concatenation

Per-thread 
Feature 
Vectors

1. Loop-based 
Profiling

1. Loop-based 
Profiling

Synchronization
Filtering

Slice Generation
(PC, count)

Flow-control



1DCFG: Dynamic Control-Flow Graph

Loop-based Profiling

112

Synchronization
Filtering

Slice Generation
(PC, count)

Flow-control



• Load Imbalance can affect profiling
§ Make sure threads make equal forward progress

• Implementation: Control the forward progress of threads
§ Synchronize threads (barriers) externally at regular intervals
§ Make sure all threads execute similar number of instructions

Loop-based Profiling: Flow-control

113

Synchronization
Filtering

Slice Generation
(PC, count)

Flow-control



• Load Imbalance can affect profiling
§ Make sure threads make equal forward progress

• Implementation: Control the forward progress of threads
§ Synchronize threads (barriers) externally at regular intervals
§ Make sure all threads execute similar number of instructions

Loop-based Profiling: Flow-control

114

t0

t1

t2

t3

EndStart

Flow-control

Synchronization
Filtering

Slice Generation
(PC, count)

Flow-control



• Load Imbalance can affect profiling
§ Make sure threads make equal forward progress

• Implementation: Control the forward progress of threads
§ Synchronize threads (barriers) externally at regular intervals
§ Make sure all threads execute similar number of instructions

Loop-based Profiling: Flow-control

115

t0

t1

t2

t3

EndStart

Flow-control

Synchronization
Filtering

Slice Generation
(PC, count)

Flow-control



• Goal: Filter out synchronization during profiling
§ Profiling data should contain only real work 

• Solutions
§ Automatic detection using loop analysis1

§ Ignore sync library code (Ex. libiomp5.so, libpthread.so)

Loop-based Profiling: Sync Filtering

116

Synchronization
Filtering

Slice Generation
(PC, count)

Flow-control



• Goal: Filter out synchronization during profiling
§ Profiling data should contain only real work 

• Solutions
§ Automatic detection using loop analysis1

§ Ignore sync library code (Ex. libiomp5.so, libpthread.so)

1Li et al., "Spin detection hardware for improved management of multithreaded systems," TPDS, 2006

Loop-based Profiling: Sync Filtering

117

Synchronization
Filtering

Slice Generation
(PC, count)

Flow-control



Ignore sync library code (Ex. libiomp5.so, libpthread.so)

1Li et al., "Spin detection hardware for improved management of multithreaded systems," TPDS, 2006

Loop-based Profiling: Sync Filtering

118

main
image

math 
lib

main 
image

main
image

sync 
lib

sync 
lib

main 
image

main 
image

main 
image

sync 
lib

Profile 
data

time

Application execution

Synchronization
Filtering

Slice Generation
(PC, count)

Flow-control



Ignore sync library code (Ex. libiomp5.so, libpthread.so)

1Li et al., "Spin detection hardware for improved management of multithreaded systems," TPDS, 2006

Loop-based Profiling: Sync Filtering

119

main
image

math 
lib

main 
image

main
image

sync 
lib

sync 
lib

main 
image

main 
image

main 
image

sync 
lib

Profile 
data

time

Application execution

Synchronization
Filtering

Slice Generation
(PC, count)

Flow-control



• Region start/stop
§ Global instruction count reaches threshold (#threads×100 M)
§ Region boundary at a loop entry/exit – use DCFG analysis

• Looppoint region markers (PC, countPC)
§ Global count of loop entries: invariant across executions
§ Simulate the same amount of work

Loop-based Profiling: Slice Generation

120

Synchronization
Filtering

Slice Generation
(PC, count)

Flow-control



• Region start/stop
§ Global instruction count reaches threshold (#threads×100 M)
§ Region boundary at a loop entry/exit – use DCFG analysis

• Looppoint region markers (PC, countPC)
§ Global count of loop entries: invariant across executions
§ Simulate the same amount of work

Loop-based Profiling: Slice Generation

121

Loop A Loop B Loop A … Loop B Loop A

Program 
execution

Synchronization
Filtering

Slice Generation
(PC, count)

Flow-control



• Region start/stop
§ Global instruction count reaches threshold (#threads×100 M)
§ Region boundary at a loop entry/exit – use DCFG analysis

• Looppoint region markers (PC, countPC)
§ Global count of loop entries: invariant across executions
§ Simulate the same amount of work

Loop-based Profiling: Slice Generation

122

Loop A Loop B Loop A … Loop B Loop A

Program 
execution Threshold Instructions

Region/Slice(PC1, count1) (PC2, count2)

Synchronization
Filtering

Slice Generation
(PC, count)

Flow-control



• Basic Block (BB)
§ Section of code with single entry and exit

• Basic Block Vector (BBV)
§ Execution fingerprint of an application interval
§ Vector with one element for each basic block
§ Exec Wt = entry count× number of instructions

Image source: Sherwood et.al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS 2002

Loop-based Profiling: Slice Generation

123

ID:   A B C
ble     t7, 0x120018bb4

subl    t7, 0x1, t7 
cmple   t7, 0x3, t2 
beq     t2, 0x120018b04

srl     a2, 0x8, t4 
and     a2, 0xff, t12 
addl    zero, t12, s6 
subl    t7, 0x1, t7 
cmpeq   s6, 0x25, v0 
cmpeq   s6, 0, t0 
bis     v0, t0, v0 
bne     v0, 0x120018c48

Example Assembly CodeBB
A

B

C
… …



• Basic Block (BB)
§ Section of code with single entry and exit

• Basic Block Vector (BBV)
§ Execution fingerprint of an application interval
§ Vector with one element for each basic block
§ Exec Wt = entry count× number of instructions

Image source: Sherwood et.al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS 2002

Loop-based Profiling: Slice Generation

124

BB Exec Count: < 1, 20, 0, …>
weigh by Block Size: < 8,  3, 1, …>

ID:   A B C
ble     t7, 0x120018bb4

subl    t7, 0x1, t7 
cmple   t7, 0x3, t2 
beq     t2, 0x120018b04

srl     a2, 0x8, t4 
and     a2, 0xff, t12 
addl    zero, t12, s6 
subl    t7, 0x1, t7 
cmpeq   s6, 0x25, v0 
cmpeq   s6, 0, t0 
bis     v0, t0, v0 
bne     v0, 0x120018c48

Example Assembly CodeBB
A

B

C
… …



• Basic Block (BB)
§ Section of code with single entry and exit

• Basic Block Vector (BBV)
§ Execution fingerprint of an application interval
§ Vector with one element for each basic block
§ Exec Wt = entry count× number of instructions

Image source: Sherwood et.al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS 2002

Loop-based Profiling: Slice Generation

125

BB Exec Count: < 1, 20, 0, …>
weigh by Block Size: < 8,  3, 1, …>

BB Exec Wt: < 8, 60, 0, …>

ID:   A B C
ble     t7, 0x120018bb4

subl    t7, 0x1, t7 
cmple   t7, 0x3, t2 
beq     t2, 0x120018b04

srl     a2, 0x8, t4 
and     a2, 0xff, t12 
addl    zero, t12, s6 
subl    t7, 0x1, t7 
cmpeq   s6, 0x25, v0 
cmpeq   s6, 0, t0 
bis     v0, t0, v0 
bne     v0, 0x120018c48

Example Assembly CodeBB
A

B

C
… …



• Basic Block (BB)
§ Section of code with single entry and exit

• Basic Block Vector (BBV)
§ Execution fingerprint of an application interval
§ Vector with one element for each basic block
§ Exec Wt = entry count× number of instructions

Image source: Sherwood et.al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS 2002

Loop-based Profiling: Slice Generation

126

BB Exec Count: < 1, 20, 0, …>
weigh by Block Size: < 8,  3, 1, …>

BB Exec Wt: < 8, 60, 0, …>

ID:   A B C
ble     t7, 0x120018bb4

subl    t7, 0x1, t7 
cmple   t7, 0x3, t2 
beq     t2, 0x120018b04

srl     a2, 0x8, t4 
and     a2, 0xff, t12 
addl    zero, t12, s6 
subl    t7, 0x1, t7 
cmpeq   s6, 0x25, v0 
cmpeq   s6, 0, t0 
bis     v0, t0, v0 
bne     v0, 0x120018c48

Example Assembly CodeBB
A

B

C
… …

[ A:8, B:60, C:0, …]
BBV



• Ratio of instructions per thread may differ
• Global-BBVs: Concatenate per-thread BBVs to larger Global BBV

127

Loop-based Profiling: Vector Concatenation



• Ratio of instructions per thread may differ
• Global-BBVs: Concatenate per-thread BBVs to larger Global BBV

128

subl    t7, 0x1, t7
gt      t7, 0x120018b90

ble     t7, 0x120018bb4

Example Assembly CodeBB
A

B

C

M

… …

subl    t7, 0x1, t7 
cmple   t7, 0x3, t2 
beq     t2, 0x120018b04

srl     a2, 0x8, t4 
and     a2, 0xff, t12 
addl    zero, t12, s6 
subl    t7, 0x1, t7 
cmpeq   s6, 0x25, v0 
cmpeq   s6, 0, t0 
bis     v0, t0, v0 
bne     v0, 0x120018c48

subl    t7, 0x1, t7
gt      t7, 0x120018b90

Example Assembly CodeBB
A

B

C

M

… …

srl     a2, 0x8, t4 
and     a2, 0xff, t12 
addl    zero, t12, s6 
subl    t7, 0x1, t7 
cmpeq   s6, 0x25, v0 
cmpeq   s6, 0, t0 
bis     v0, t0, v0 
bne     v0, 0x120018c48
subl    t7, 0x1, t7 
cmple   t7, 0x3, t2 
beq     t2, 0x120018b04
ble     t7, 0x120018bb4

Loop-based Profiling: Vector Concatenation



• Ratio of instructions per thread may differ
• Global-BBVs: Concatenate per-thread BBVs to larger Global BBV

129

subl    t7, 0x1, t7
gt      t7, 0x120018b90

ble     t7, 0x120018bb4

subl    t7, 0x1, t7 
cmple   t7, 0x3, t2 
beq     t2, 0x120018b04

BB
A

B

C

M

… …

Example Assembly Code

srl     a2, 0x8, t4 
and     a2, 0xff, t12 
addl    zero, t12, s6 
subl    t7, 0x1, t7 
cmpeq   s6, 0x25, v0 
cmpeq   s6, 0, t0 
bis     v0, t0, v0 
bne     v0, 0x120018c48

subl    t7, 0x1, t7
gt      t7, 0x120018b90

Example Assembly CodeBB
A

B

C

M

… …

srl     a2, 0x8, t4 
and     a2, 0xff, t12 
addl    zero, t12, s6 
subl    t7, 0x1, t7 
cmpeq   s6, 0x25, v0 
cmpeq   s6, 0, t0 
bis     v0, t0, v0 
bne     v0, 0x120018c48
subl    t7, 0x1, t7 
cmple   t7, 0x3, t2 
beq     t2, 0x120018b04
ble     t7, 0x120018bb4

Thread 0

Thread 1

Loop-based Profiling: Vector Concatenation



• Ratio of instructions per thread may differ
• Global-BBVs: Concatenate per-thread BBVs to larger Global BBV

130

subl    t7, 0x1, t7
gt      t7, 0x120018b90

ble     t7, 0x120018bb4

subl    t7, 0x1, t7 
cmple   t7, 0x3, t2 
beq     t2, 0x120018b04

BB

… …

Example Assembly Code

srl     a2, 0x8, t4 
and     a2, 0xff, t12 
addl    zero, t12, s6 
subl    t7, 0x1, t7 
cmpeq   s6, 0x25, v0 
cmpeq   s6, 0, t0 
bis     v0, t0, v0 
bne     v0, 0x120018c48

subl    t7, 0x1, t7
gt      t7, 0x120018b90

Example Assembly CodeBB
A

B

C

M

… …

srl     a2, 0x8, t4 
and     a2, 0xff, t12 
addl    zero, t12, s6 
subl    t7, 0x1, t7 
cmpeq   s6, 0x25, v0 
cmpeq   s6, 0, t0 
bis     v0, t0, v0 
bne     v0, 0x120018c48
subl    t7, 0x1, t7 
cmple   t7, 0x3, t2 
beq     t2, 0x120018b04
ble     t7, 0x120018bb4

BB ID:      A    B     C    …
BB Exec Wt:    < 8,   60,   0, … >

BB ID:      N    O     P    … 
BB Exec Wt:    < 5,   90,   3, … >

N

O

P

Z

Thread 0

Thread 1

Loop-based Profiling: Vector Concatenation



• Ratio of instructions per thread may differ
• Global-BBVs: Concatenate per-thread BBVs to larger Global BBV

131

subl    t7, 0x1, t7
gt      t7, 0x120018b90

ble     t7, 0x120018bb4

subl    t7, 0x1, t7 
cmple   t7, 0x3, t2 
beq     t2, 0x120018b04

BB

… …

Example Assembly Code

srl     a2, 0x8, t4 
and     a2, 0xff, t12 
addl    zero, t12, s6 
subl    t7, 0x1, t7 
cmpeq   s6, 0x25, v0 
cmpeq   s6, 0, t0 
bis     v0, t0, v0 
bne     v0, 0x120018c48

subl    t7, 0x1, t7
gt      t7, 0x120018b90

Example Assembly CodeBB
A

B

C

M

… …

srl     a2, 0x8, t4 
and     a2, 0xff, t12 
addl    zero, t12, s6 
subl    t7, 0x1, t7 
cmpeq   s6, 0x25, v0 
cmpeq   s6, 0, t0 
bis     v0, t0, v0 
bne     v0, 0x120018c48
subl    t7, 0x1, t7 
cmple   t7, 0x3, t2 
beq     t2, 0x120018b04
ble     t7, 0x120018bb4

BB ID:      A    B     C    …
BB Exec Wt:    < 8,   60,   0, … >

BB ID:      N    O     P    … 
BB Exec Wt:    < 5,   90,   3, … >

N

O

P

Z

Thread 0

Thread 1

Loop-based Profiling: Vector Concatenation

[ A:8, B:60, C:0, …, N:5, O:90, P:3, …]
Global-BBV



638.imagick_s/magick/morphology.c

2842 #if defined(MAGICKCORE_OPENMP_SUPPORT)

2843   #pragma omp parallel for schedule(static,4) shared(progress,status) \

2844 magick_threads(image,result_image,image->rows,1)

2845 #endif

2846 for (y=0; y < (ssize_t) image->rows; y++)

2847 {

……

2886 for (x=0; x < (ssize_t) image->columns; x++)

2887 {

3021 for (v=0; v < (ssize_t) kernel->height; v++) {

3022 for (u=0; u < (ssize_t) kernel->width; u++, k--) {

……

3034 } /* u */

……

3037 }  /* v */

3342      } /* x */

3357   } /* y */

……

A LoopPoint Region

132

638.imagick_s, train input, 8 threads



638.imagick_s/magick/morphology.c

2842 #if defined(MAGICKCORE_OPENMP_SUPPORT)

2843   #pragma omp parallel for schedule(static,4) shared(progress,status) \

2844 magick_threads(image,result_image,image->rows,1)

2845 #endif

2846 for (y=0; y < (ssize_t) image->rows; y++)

2847 {

……

2886 for (x=0; x < (ssize_t) image->columns; x++)

2887 {

3021 for (v=0; v < (ssize_t) kernel->height; v++) {

3022 for (u=0; u < (ssize_t) kernel->width; u++, k--) {

……

3034 } /* u */

……

3037 }  /* v */

3342      } /* x */

3357   } /* y */

……

A LoopPoint Region

133

(
P
C 1
:
c
o
u
n
t
1
)

(
P
C 2
:
c
o
u
n
t
2
)

638.imagick_s, train input, 8 threads



• Group similar Global-BBVs
§ K-means algorithm: Centroid-based clustering

• Vector closest to centroid is the representative
• Simulation regions (looppoints)

§ Checkpoints generated from the application
§ Use (PC, countPC) information of representatives

Identifying Simulation Regions

134



• Group similar Global-BBVs
§ K-means algorithm: Centroid-based clustering

• Vector closest to centroid is the representative
• Simulation regions (looppoints)

§ Checkpoints generated from the application
§ Use (PC, countPC) information of representatives

Identifying Simulation Regions

135



• Group similar Global-BBVs
§ K-means algorithm: Centroid-based clustering

• Vector closest to centroid is the representative
• Simulation regions (looppoints)

§ Checkpoints generated from the application
§ Use (PC, countPC) information of representatives

Identifying Simulation Regions

136



• Group similar Global-BBVs
§ K-means algorithm: Centroid-based clustering

• Vector closest to centroid is the representative
• Simulation regions (looppoints)

§ Checkpoints generated from the application
§ Use (PC, countPC) information of representatives

Identifying Simulation Regions

137

Representative regions

Centroid



• Representative regions (looppoints) are simulated in parallel
• Warmup handling

§ Simulate a large enough warmup region before simulation region
• Application performance

§ The weighted average of the performance of simulation regions

Application Reconstruction

138



• Representative regions (looppoints) are simulated in parallel
• Warmup handling

§ Simulate a large enough warmup region before simulation region
• Application performance

§ The weighted average of the performance of simulation regions

Application Reconstruction

139

𝒕𝒐𝒕𝒂𝒍 𝒓𝒖𝒏𝒕𝒊𝒎𝒆 = ,
𝒊"𝒓𝒆𝒑𝟏

𝒓𝒆𝒑𝑵

𝒓𝒖𝒏𝒕𝒊𝒎𝒆𝒊 ×𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒆𝒓𝒊



• Representative regions (looppoints) are simulated in parallel
• Warmup handling

§ Simulate a large enough warmup region before simulation region
• Application performance

§ The weighted average of the performance of simulation regions

Application Reconstruction

140

𝒕𝒐𝒕𝒂𝒍 𝒓𝒖𝒏𝒕𝒊𝒎𝒆 = ,
𝒊"𝒓𝒆𝒑𝟏

𝒓𝒆𝒑𝑵

𝒓𝒖𝒏𝒕𝒊𝒎𝒆𝒊 ×𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒆𝒓𝒊

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝑗 =
∑"#$% 𝑖𝑛𝑠𝑐𝑜𝑢𝑛𝑡𝑖
𝑖𝑛𝑠𝑐𝑜𝑢𝑛𝑡𝑗

m regions represented by jth looppoint 



• Simulation Infrastructure
§ Sniper1 7.4

• Mimics Intel Gainestown 8/16 core

• Benchmarks and OpenMP settings
§ SPEC CPU2017 speed benchmarks

• Input: train; Threads: 8; Wait policy: Active, Passive
§ NAS Parallel Benchmarks (NPB)

• Input: Class C; Threads: 8, 16; Wait policy: Passive

§ OpenMP scheduling policy: static

1Carlson et.al., “Sniper: Exploring the level of abstraction for scalable and accurate parallel multi-core simulation”, SC 2011

Experimental Setup

141
Image source: https://www.openmp.org/; https://www.spec.org/cpu2017/ ; https://www.nas.nasa.gov/ 



Application
(speed version)

Parallel static 
for

dyna
mic 
for

barrier 
(explic

it)
master single reduction 

(nowait)

atomic 
(float8_a

dd)

atomic 
(float8
_max)

atomic 
(fixed4_

add)
lock

603.bwaves Yes Yes Yes Yes Yes

607.cactuBSSN Yes Yes Yes Yes Yes Yes

619.lbm Yes Yes

621.wrf Yes Yes Yes

627.cam4 Yes Yes Yes Yes Yes

628.pop2 Yes Yes Yes Yes

638.imagick Yes Yes Yes Yes Yes Yes

644.nab Yes Yes Yes Yes Yes Yes

649.fotonik3d Yes Yes

654.roms Yes Yes

Source: SPEC CPU®2017 documentation index

SPEC CPU2017 Analysis

142



• Software
§ Static OpenMP scheduling (OMP_WAIT_POLICY=STATIC)
§ Homogeneous parallel threads doing similar amount of work

• Hardware
§ Simulated hardware needs to be homogeneous
§ No dynamic hardware events supported

Workload Type Supported

143



Accuracy Results

144

Prediction error wrt. performance of whole application
SPEC CPU2017 with train inputs, 8 threads

average



Accuracy Results

145

Prediction error wrt. performance of whole application
SPEC CPU2017 with train inputs, 8 threads

average



Accuracy Results

146

Prediction error wrt. performance of whole application
SPEC CPU2017 with train inputs, 8 threads

average

Active: 2.33%
Passive: 2.23%



Changing Thread Count

147

Runtime prediction error wrt. whole application runtime
NPB 3.3 with Class C inputs, 8 and 16 threads, passive wait-policy



Changing Thread Count

148

Runtime prediction error wrt. whole application runtime
NPB 3.3 with Class C inputs, 8 and 16 threads, passive wait-policy

8 cores: 2.87%
16 cores: 1.78%



Speedup

149

Parallel and serial speedup achieved for LoopPoint

Serial
Actual
Theoretical

Parallel
Actual
Theoretical

SPEC CPU2017 with train inputs, 8 threads, active wait-policy



Speedup

150

Parallel and serial speedup achieved for LoopPoint

Serial
Actual
Theoretical

Parallel
Actual
Theoretical

SPEC CPU2017 with train inputs, 8 threads, active wait-policy

Serial: 9×
Parallel: 303×



Speedup

151

Parallel and serial speedup achieved for LoopPoint
NPB with Class C inputs, 8 and 16 threads, passive wait-policy

Parallel

8 cores
Serial

16 cores
Serial
Parallel

Serial
Actual
Theoretical

Parallel
Actual
Theoretical

SPEC CPU2017 with train inputs, 8 threads, active wait-policy



Speedup

152

Parallel and serial speedup achieved for LoopPoint
NPB with Class C inputs, 8 and 16 threads, passive wait-policy

Parallel

8 cores
Serial

16 cores
Serial
Parallel

Serial
Actual
Theoretical

Parallel
Actual
Theoretical

SPEC CPU2017 with train inputs, 8 threads, active wait-policy

Serial: 49×
Parallel: 1031×

8 core

Serial: 31×
Parallel: 606×

16 core



Speedup

153

Theoretical Speedup comparison with BarrierPoint
SPEC CPU2017 with ref inputs, 8 threads, passive wait-policy

LoopPoint

BarrierPoint

Serial

Serial

Parallel

Parallel



Speedup

154

Theoretical Speedup comparison with BarrierPoint
SPEC CPU2017 with ref inputs, 8 threads, passive wait-policy

Up to 31000X 
speedup!

LoopPoint

BarrierPoint

Serial

Serial

Parallel

Parallel

Serial: 244×
Parallel: 11587×



• Contributions
§ Methodology to sample generic multi-threaded workloads
§ Uses application loops (barring spinloops) as the unit of work
§ Flexible to be used for checkpoint-based simulation

• Accurate results in minimal time
§ Average absolute error of 2.3% across applications
§ Parallel speedup going up to 31,000×
§ Reduces simulation time from a few years to a few hours

Summary

155



• Links
§ Artifact: https://github.com/nus-comparch/looppoint
§ Page: https://looppoint.github.io
§ Short talk: https://youtu.be/Tr6O9MkT42g
§ Questions: alens@comp.nus.edu.sg, tcarlson@comp.nus.edu.sg

We can share our SPEC binaries and LoopPoint specifications if you have the SPEC user license

More Information

156

https://github.com/nus-comparch/looppoint
https://looppoint.github.io/
https://youtu.be/Tr6O9MkT42g
mailto:alens@comp.nus.edu.sg
mailto:tcarlson@comp.nus.edu.sg


Agenda

157

Time Speaker Topic

13.20 to 13.30 Alen Sabu Overview of the tutorial

13.30 to 14.30 Harish Patil Tools & Methodologies: Pin, PinPlay, SDE, ELFies

14.30 to 15.00 Break

15.00 to 15.50 Wim Heirman Simulation with Sniper / Sniper 8.0 GitHub release

15.50 to 16.45 Alen Sabu Single-threaded and Multi-threaded Sampling, LoopPoint

16.45 to 17.30 Alen Sabu Running LoopPoint Tools



LoopPoint and ELFies: Tools and Techniques to 
Accelerate Simulations of Multi-threaded Applications 

using Checkpointing

Alen Sabu1, Harish Patil2, Wim Heirman2, Trevor E. Carlson1
1National University of Singapore

2Intel Corporation

International Symposium on Computer Architecture, June 19th 2022, USA 



LoopPoint Demo
Session 4

ALEN SABU, PHD CANDIDATE
NATIONAL UNIVERSITY OF SINGAPORE

159



• Clone from https://github.com/snipersim/snipersim
• export CC=gcc-9; export CXX=g++-9
• make or make USE_PINPLAY=1
• Set SNIPER_ROOT to point to the Sniper base directory
• All set to use Sniper 8.0!
• Testing:

§ make -C test/fft

Downloading Sniper 8.0

160

https://github.com/snipersim/snipersim


• Prerequisites
§ x86-based Linux machine
§ Require GCC 9
§ Python
§ Docker

Downloading LoopPoint

161



• Opensource code
§ https://github.com/nus-comparch/looppoint.git
§ Clone the repo

Downloading LoopPoint

162

https://github.com/nus-comparch/looppoint.git


• make build
§ Build docker image

Building LoopPoint

163



• make build
§ Build docker image

Building LoopPoint

164

Successfully built b006ee297a64
Successfully tagged ubuntu:18.04-looppoint



• make build
• make

§ Run the docker image

Building LoopPoint

165



• make build
• make
• make apps

§ Build the demo applications
§ Source code of the apps

• apps/demo/matrix-omp
• apps/demo/dotproduct-omp

Building LoopPoint

166



• make build
• make
• make apps
• make tools

§ Build Sniper and LoopPoint tools

Building LoopPoint

167

Sniper build completed

...

Downloading 
Sniper

Downloading 
Intel SDE



• Opensource code
§ https://github.com/nus-comparch/looppoint.git
§ Clone the repo

• LoopPoint script
§ make build

• Build docker image

§ make
• Run docker image

§ make apps
• Build the demo applications

§ make tools
• Build Sniper and LoopPoint tools

Building LoopPoint

168

https://github.com/nus-comparch/looppoint.git


• Use LoopPoint driver script
§ ./run-looppoint.py –h
§ Provides the information on how to run the tool

Running LoopPoint

169



• Example run command
§ ./run-looppoint.py -p demo-dotproduct-1 -n 8 --force

Running LoopPoint

170



• The LoopPoint driver script
§ Profiling the application 

Running LoopPoint

171



• The LoopPoint driver script
§ Profiling the application  

• make_mt_pinball : Generate whole-program pinball
• gen_dcfg : Generate DCFG file to identify loop information
• gen_bbv : Generate feature vector of each region
• gen_cluster : Cluster regions

Running LoopPoint

172



• Makes Pin-based analyses repeatable.
• Command:

§ $SDE_KIT/pinplay-scripts/sde_pinpoints.py --mode mt --
cfg=$CFGFILE --log_options="-start_address main -log:fat
-log:basename $WPP_BASE” --replay_options="-replay:strace" –l

• Generates a whole-program pinball for further profiling steps

Fat Pinball

173



• A dynamic control-flow graph (DCFG) is a specialized control-flow 
graph that adds data from a specific execution of a program

• C++ DCFG APIs available for accessing the data
§ DCFG_LOOP_CONTAINER::get_loop_ids

• Get the set of loop IDs
§ DCFG_LOOP

• get_routine_id : get the function that the loop belongs to 
• get_parent_loop_id : get the parent loop 

DCFG Generation

174



• A dynamic control-flow graph (DCFG) is a specialized control-flow 
graph that adds data from a specific execution of a program

• C++ DCFG APIs available for accessing the data.
• More APIs can be found in

§ tools/sde-external-9.0.0-2021-11-07-lin/pinkit/sde-example/include
• dcfg_api.H
• dcfg_pin_api.H
• dcfg_trace_api.H

DCFG Generation

175



• Collect Loop Information
• Command:

§ $SDE_BUILD_KIT/pinplay-scripts/replay.py --pintool=sde-global-
looppoint.so --pintool_options “-dcfg -replay:deadlock_timeout
0 -replay:strace -dcfg:out_base_name $DCFG_BASE $WPP_BASE”

§ -dcfg : enable DCFG generation
§ DCFG_BASE : the basename of DCFG that is generated

DCFG Generation

176



• Profiling the feature vector of each region
• Command:

§ $SDE_BUILD_KIT/pinplay-scripts/sde_pinpoints.py --pintool="sde-global-looppoint.so"
--global_regions --pccount_regions --cfg $CFG --whole_pgm_dir $WPP_DIR --mode mt -S
$SLICESIZE -b --replay_options "-replay:deadlock_timeout 0 -global_profile -
emit_vectors 0 -filter_exclude_lib libgomp.so.1 -filter_exclude_lib libiomp5.so -
looppoint:global_profile -looppoint:dcfg-file $DCFG -looppoint:main_image_only 1 -
looppoint:loop_info $PROGRAM.$INPUT.loop_info.txt -flowcontrol:verbose 1 -
flowcontrol:quantum 1000000 -flowcontrol:maxthreads $NCORES”

§ -pccount_regions : (PC, count)-based region information
§ -S $SLICESIZE: The global instruction count for each region
§ -filter_exclude_lib: Exclude libraries from profiling information

BBV Generation

177



• Profiling the feature vector of each region
• Command:

§ $SDE_BUILD_KIT/pinplay-scripts/sde_pinpoints.py --pintool="sde-global-looppoint.so"
--global_regions --pccount_regions --cfg $CFG --whole_pgm_dir $WPP_DIR --mode mt -S
$SLICESIZE -b --replay_options "-replay:deadlock_timeout 0 -global_profile -
emit_vectors 0 -filter_exclude_lib libgomp.so.1 -filter_exclude_lib libiomp5.so -
looppoint:global_profile -looppoint:dcfg-file $DCFG -looppoint:main_image_only 1 -
looppoint:loop_info $PROGRAM.$INPUT.loop_info.txt -flowcontrol:verbose 1 -
flowcontrol:quantum 1000000 -flowcontrol:maxthreads $NCORES”

§ -looppoint:main_image_only: Select only main image for choosing markers
§ -looppoint:loop_info : Utilize loop information as the marker of each region
§ -flowcontrol:quantum : synchronize each thread every 1000000 instructions

BBV Generation

178



• Cluster all regions into several groups. 
§ SimPoint [1]
§ Utilize feature vectors of all threads
§ kmeans algorithm

[1] Sherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS’02

Clustering

179



• Cluster all regions into several groups.
• Command

§ $SDE_BUILD_KIT/pinplay-scripts/sde_pinpoints.py --pintool="sde-
global-looppoint.so" --cfg $CFG --whole_pgm_dir $WPP_DIR -S
$SLICESIZE --warmup_factor=2 --maxk=$MAXK --append_status -s --
simpoint_options="-dim $DIM -coveragePct 1.0 -maxK $MAXK”

§ DIM : The reduced dimension of the vector that BBVs are projected to
§ MAXK : Maximum number of clusters for kmeans

Clustering

180



• The LoopPoint driver script
§ Profiling Results:

• dotproduct.1_52.global.pinpoints.csv
• (start-pc, start-pc-count ), (end-pc, end-pc-count)

Running LoopPoint

181



• The LoopPoint driver script
§ Profiling Results:

• dotproduct.1_52.global.pinpoints.csv
• (start-pc, start-pc-count ), (end-pc, end-pc-count)

Running LoopPoint

182



• The LoopPoint driver script
§ Profiling Results:

• dotproduct.1_52.global.pinpoints.csv
• (start-pc, start-pc-count ), (end-pc, end-pc-count)
• Cluster group id

Running LoopPoint

183



• The LoopPoint driver script
§ Profiling Results:

• dotproduct.1_52.global.pinpoints.csv
• (start-pc, start-pc-count ), (end-pc, end-pc-count)
• Cluster group id
• Cluster multiplier

Running LoopPoint

184



• The LoopPoint driver script
§ Profiling the application  

• dotproduct.1_52.global.pinpoints.csv 
• Sampled Simulation : (start-pc, start-pc-count ), (end-pc, 
end-pc-count), cluster group id

• Extrapolation : cluster group id, cluster-multiplier

Running LoopPoint

185



• The LoopPoint driver script
§ Profiling the application 
§ Sampled simulation of selected regions

Running LoopPoint

186



Simulation using Sniper

187

• LoopPoint support in Sniper 8.0 (using Intel SDE)
• Handle the beginning and ending of representative regions

• Using PC-based markers

§ Sniper shifts simulation modes based on signals from Pin/SDE



Simulation using Sniper

188

• LoopPoint support in Sniper 8.0 (using Intel SDE)
§ Handle the beginning and ending of representative regions
§ ./run-sniper -n 8 -gscheduler/type=static -cgainestown -

ssimuserroi --roi-script --trace-args=-control 
start:address:<PC>:count<Count>:global --trace-args=-control 
stop:address:<PC>:count<Count>:global -- <app cmd>

§ Region start: -control start:address:<PC>:count<Count>
§ Region end: -control end:address:<PC>:count<Count>
§ PC, Count : LoopPoint region boundaries
§ Note: Use -pinplay:control if Pin/Pinplay is used instead of SDE



Simulation using Sniper

189

.

-- ./base.exe



Simulation using Sniper

190

.

-- ./base.exe

Start PC and count

End PC and countApplication



Simulation using Sniper

191



Simulation using Sniper

192

Warmup 
ends

Fast-forwarding 
the rest

Detailed simulation



• The LoopPoint driver script
§ Profiling the application 
§ Sampled simulation of selected regions
§ Extrapolation of performance results

Running LoopPoint

193



Extrapolation  of Performance Result

194

• Runtime of corresponding representative region : region_runtime
• Scaling factor : multiplier



• The LoopPoint driver script
§ Profiling the application 
§ Sampled simulation of selected regions
§ Extrapolation of performance results

• Predicted runtime using sampled simulation

Running LoopPoint

195



• The LoopPoint driver script
§ Profiling the application 
§ Sampled simulation of selected regions
§ Extrapolation of performance results

• Predicted runtime using sampled simulation
• The error rate of obtained using sampled simulation

Running LoopPoint

196



• Gem5 support for LoopPoint region specification
• Release of 8-threaded SPEC CPU2017 representative pinballs
• Support for Open-source benchmarks (like NPB)

Coming soon!

197



Thank you!

198



LoopPoint and ELFies: Tools and Techniques to 
Accelerate Simulations of Multi-threaded Applications 

using Checkpointing

Alen Sabu1, Harish Patil2, Wim Heirman2, Trevor E. Carlson1
1National University of Singapore

2Intel Corporation

International Symposium on Computer Architecture, June 19th 2022, USA 


