LoopPoint and ELFies: Tools and Techniques to

Accelerate Simulations of Multi-threaded Applications
using Checkpointing

Alen Sabu!, Harish Patil?, Wim Heirman?, Trevor E. Carlson!
!National University of Singapore
2Intel Corporation

NUS

National University
of Singapore

intel

International Symposium on Computer Architecture, June 19th 2022, USA

BB &

Agenda

13.20 to 13.30
13.30 to 14.30
14.30 to 15.00
15.00 to 15.50

15.50 to 16.45
16.45 to 17.30

Alen Sabu
Harish Patil

Wim Heirman

Alen Sabu
Alen Sabu

Overview of the tutorial

Tools & Methodologies: Pin, PinPlay, SDE, ELFies
Break

Simulation with Sniper / Sniper 8.0 GitHub release

Single-threaded and Multi-threaded Sampling, LoopPoint

Running LoopPoint Tools

13.20 to 13.30
13.30 to 14.30
14.30 to 15.00
15.00 to 15.50

15.50 to 16.45
16.45 to 17.30

Alen Sabu
Harish Patil

Wim Heirman

Alen Sabu
Alen Sabu

Overview of the tutorial

Tools & Methodologies: Pin, PinPlay, SDE, ELFies

Simulation with Sniper / Sniper 8.0 GitHub release

Single-threaded and Multi-threaded Sampling, LoopPoint

Running LoopPoint Tools

Tools from Intel

e Speaker: Harish Patil

* Topics Covered

Principal Engineer, Intel Corporation

Binary instrumentation using Pin or writing Pintools
PinPlay kit and PinPlay-enabled tools

SDE build kit for microarchitecture emulation
Checkpointing threaded applications using PinPlay, SDE
Detailed discussion on ELFies including its generation and usage

Simulation and Sampling Overview

 Speaker: Wim Heirman
= Principal Engineer, Intel Corporation
* Topics Covered
= Architectural exploration and evaluation
= Simulation as a tool for performance estimation

= Methods for fast estimation using simulation
= Qverview of Sniper simulator
= Sniper 8.0 features and public release

LoopPoint Methodology

* Speaker: Alen Sabu

PhD Candidate, National University of Singapore

* Topics Covered

Single-threaded sampled simulation techniques
Sampled simulation of multi-threaded applications
Existing methodologies and their drawbacks
Detailed discussion on LoopPoint methodology
Experimental results of LoopPoint

Simulation and Demo

* Speaker: Alen Sabu
= PhD Candidate, National University of Singapore

* Topics Covered

= High-level structure of LoopPoint code
= Demo on how to use LoopPoint tools
" |ntegrating workloads to run with LoopPoint

13.20 to 13.30
13.30 to 14.30
14.30 to 15.00
15.00 to 15.50

15.50 to 16.45
16.45 to 17.30

Alen Sabu
Harish Patil

Wim Heirman

Alen Sabu
Alen Sabu

Overview of the tutorial

Tools & Methodologies: Pin, PinPlay, SDE, ELFies

Simulation with Sniper / Sniper 8.0 GitHub release

Single-threaded and Multi-threaded Sampling, LoopPoint

Running LoopPoint Tools

LoopPoint and ELFies: Tools and Techniques to

Accelerate Simulations of Multi-threaded Applications
using Checkpointing

Alen Sabu!, Harish Patil?, Wim Heirman?, Trevor E. Carlson!

!National University of Singapore

2Intel Corporation

NUS

National University
of Singapore

intel

International Symposium on Computer Architecture, June 19th 2022, USA

BB &

Session 1

Tools and Methodologies

HARISH PATIL, PRINCIPAL ENGINEER (DEVELOPMENT TOOLS SOFTWARE)
INTEL CORPORATION

Pin: A Tool for Writing Program Analysis Tools

counter++; print (IP)

sub $Oxff, %edx sub $SOxff, %edx

ovl 0x8 (%ebp) , %eax counter++; print (EA)

jle <L1> movl 0x8 (%$ebp), %eax
counter++;print (br_taken)
jle <L1l>

s
Intel PIN

Test-program L’ PRO§ AMMlNG lANGUAGES

Operating System

Hardware

Normal output +
Analysis output

$ pin -t pintool —- test-program

(10 http://pintool.intel.com

http://pintool.intel.com/

PinPlay: Software-based User-level Capture and

Replay
Replayer
Logger = B[] L] BN = +
Program .
Libraries PI ﬂTOO|
m :o bina;iest/.inputs
: o application
oo
Platforms : Linux, Windows, MacOS No license
checking

Upside : It works! Large OpenMP / MPI programs, Oracle

Downside : High run-tfime overhead: ~100-200X for capture =
Cannot be turned on all the time

o http://pinplay.org

http://pinplay.org/

Pinball (single-threaded):

Initial memory/register + injections
O ——————————————————————————————

foo.reg Internal states initialized

Replayer + Simulator

— s T T
Replay 50 100 250

N instructions‘% 8 =
Initial § < E 5
memo (1'4 0
) ry N «» o
Image N

Inject events: based on instruction counts

foo.sel / foo.reg

(injections)

*System calls : skipped by injecting next rip/ memory changed
« CPUID, RDTSC : affected registers injected

- Signals/Callbacks : New register state injected

foo.text

Pinball (multi-threaded):

Pinball (single-threaded) + Thread-dependencies
foo.reg (per-thread) y ==
Initial registers:
T(n-1

y ___
Initial registers: | nitiq| registers:
10 Tl
foo.text
Application Memory (common)

Event injection works only if same behavior
foo.reg (per-thread) (same instruction counts) is guaranteed

foo.sel (per-thread) during replay

IAEEREEE— Thread T2 cannot execute instruction
5 until T4 executes instruction 1
Thread T1 cannot execute instruction 2

foo.race (per-thread) until T2 executes instruction 2

(1) MT Pinball == race-files provide determinism $2NU

ELFie : An Executable Application Checkpoint

 Checkpoint: Memory + Registers Startup-
« Application : Only program state captured -- no code
OS or simulator states User-:opdegiﬁed

 Executable : In the Executable Linkage Format

i —Application
commonly used on Linux pplication

___Memory |

Arch. State |-
(per thread) _‘
|

pinball2elf: Pinball converter to ELF

Startup-
code

njection
(.sel)) User-specified
N7 pinball2elf code
L\ _/ \
x Application
Arch. - Memory
re User-specified
(orde; callbacks : per Stnat:a (Iip;er L
.race
process and per-
I A thread ﬂ'thm‘d')—

) http://pinelfie.orqg

http://pinelfie.org/

Getting started with pinball2elf

Prerequisite: ‘perf installed on your Linux box (perf stat /bin/Is should work)
« Clone pinball2elf repository: git clone https.//github.com/intel/pinball2elf.qit
» cd pinball2elf/src

 make all
 cd../examples/ST
o /testST.sh

Running ../../scripts//pinball2elf.basic.sh pinball.st/log_0

.kunning .J../scripts//pinball2elf.perf.sh pinball.st/log_0 st
export ELFIE_PERFLIST=0:0,0:1,1:1

hw_cpu_cycles:47272 hw_instructions:4951 sw_task_clock:224943
Tested : Ubuntu 20.04.4 LTS : gcc/g++ 7.5.0 and 9.4.0
@ and Ubuntu 18.04.6 LTS: gcc/g++ 7.5.0

ELFie types: basic, sim, perf

 basic |sim _______|perf

How to create scripts/pinball2elf.ba scripts/pinball2elf.sim scripts/pinball2elf.perf.sh
sic.sh pinball .Sh pinball pinball perf.out
Exits gracefully? NO, either hangs or NO, either hangs or YES, when retired instruction
dumps core dumps core count reaches pinball icount
Simulator handles
exit
Environment NONE ELFIE_VERBOSE=0/1 "ELFIE_WARMUP" to decide whether to
. ELFIE_COREBASE=X use warmup
variables used Set affinity : thread 0 > core "ELFIE_PCCONT" to decide how to end
X, thread 1 - core x+1 warmup/simulation regions

ELFIE_PERFLIST, enables
performance counting

@ Optional: Operating system state (SYSSTATE) per pinball:
pintools/PinballSYSState [See CGO2021 ELFie paper]

Example: ELFIE PERFLIST with a perf ELFie

ELFIE_PERFLIST, enables performance counting
(based on /usr/include/linux/perf_event.h
perftype: 0 --> HW 1 --> SW
HW counter: 0 --> PERF_COUNT_HW_CPU_CYCLES
HW counter: 1 --> PERF_COUNT_HW_CPU_INSTRUCTIONS
SW counter: 0 --> PERF_COUNT_SW_CPU_CLOCK

... <see perf_event.h:'enum perf_hw_ids' and ‘enum| ROI start: TSC 48051110586217756
perf_sw_ids') Thread start: TSC 48051110623843452
7% cd examples/MT _ Simulation end: TSC 48051110625045322
% ../../scripts/pinball2elf.perf.sh pinball.mt/log_0 perf.out Sim-end-icount 3436
% setenv ELFIE_PERFLIST "0:0,0:1,1:1* hw_cpu_cycles:36148 hw_instructions:3476
: N : task_clock:141901
% pmball.mf//og_O.perf.eV sw_task_cloc 0
—— perf.out.0.perf.txt Thread end: TSC 48051110625366502
f 9 f txt hw_cpu_cycles:40097 hw_instructions:4455
Per.oul.2.perr.Ix sw_task_clock:188637

PinPoints == Pin + SimPoint

ey My iy Py gy

—pProfile with a pin-based profiler

Intervals :

EP):gcg LI; E ?n 30 million Instructions
Analyze with SimPoint each
Find

hoose one simulation
~ point per phase
)

I PinPoint 1: Weight 30% _I PinPoint 2: Weight 70% I

PinPoints : The repeatability challenge

Profiler + SimPoint

Test-program,

Test-program Simulate

Problem: Two runs are not exactly same = PinPoints missed (PC marker based)

| "PinPoints out of order” “PinPoint End seen before Start” |

Found this for 25/54 SPEC2006 runs!

PinPlay provides repeatability

Test-program —)[

PinPlay
Logger

|

program
pinball

Profiler + SimPoint

PinPlay]

Re-logger

Region
pinballs

Simulate

Single-threaded PinPoints = SPEC2006/2017

pinballs publicly available

1. University of California (San Diego), Intel Corporation, and Ghent
University
https://www.spec.org/cpu2006/research/simpoint.html

2. University of Texas at Austin
https://www.spec.org/cpu2017/research/simpoint.html

3. Northwestern University
Public Release and Validation of SPEC CPU2017 PinPoints

https://www.spec.org/cpu2006/research/simpoint.html
https://www.spec.org/cpu2017/research/simpoint.html
https://arxiv.org/pdf/2112.06981

Simulation of multi-threaded Programs: The

non-determinism challenge

* Runs across different configurations are non-deterministic [Alameldeen’03]
* Locks are acquired in different order
* Unprotected shared-memory accesses

* One can’t compare two runs/simulations of the same benchmark directly

—Change in micro-architecture present/simulated or execution path
taken?

1.Alameldeen’03 Variability in Architectural Simulations of Multi-threaded Workloads (HPCAZ2003)

Dealing with non-determinism

1. Run multiple simulations for each studied configuration [Alameldeen’03]
. Needs random perturbation for each run
. Average behavior per configuration
. Cost: multiple runs
* 2. Force deterministic behavior so that one run in each configuration is performed [Pereira’08
@ Intel]
. Same execution paths
. Cost: loss in fidelity, thread behavior tied to tracing machine

e 3. Simulate the same “amount of work” [Alameldeen’06] : LoopPoint approach

A. Pereira’08: Reproducible Simulation of Multi-Threaded Workloads for Architecture Design Exploration, International
Symposium on Workload Characterization (IISWC'08)

B. Alameldeen’06 IPC Considered Harmful for Multi-processors Workloads (IEEE-Micro-2006)

LoopPoint: Key idea 1: Filtering Synchronization

Code during profiling

Why: Profiling should look only at ‘real work’
What: Skip profiling of synchronization code
How?

e Automatically with Loop Analysis: Very hard

“Spin Detection Hardware for Improved Management of Multithreaded Systems”
Transactions on Parallel and Distributed Systems, 2006

= Look for loops that do not update architectural state

= Was implemented in Sniper(Pin-2) but many OpenMP spin loops maintain stats hence
do update architecture state

v" Heuristic

= Filter synchronization library code: e.g. libiomp5.so, libpthread.so

LoopPoint. Key idea 2: Loops as ‘Units of work’

Why: Property of program/binary : independent of architecture

Profiling

Variable length intervals

Close to desired length : -sliceSize S
wpp Profile with a SDE/DCFG-based profiler

Program
Execution

. Global counting of loop-entries

. Region start/stop : only in the main image
. Stop when ‘desired global instruction count’ (SliceSize) is reached
. Do not count instructions in synchronization library

DCFG Generation with PinPlay

Dynamic Control-Flow Graph (DCFG)
Directed graph extracted for a specific execution:
Nodes = basic blocks
Edges =»control-flow : augmented with per-thread execution counts

Replay: w/custom

Record: ... dcfg-driver PinPIay tool using DCFG
-dcfg AP

DCFG JSON file

PinPlay + DCFG : Stronger Repeatability

~
Test-program

_

PinPlay

Logger +
DCFG
generation

Ay program Computation loop

/

[LoopPoint Profiler +]

SimPoint

Whole

pinball entries

DCFG JSON file

LoopPoint: Simulation alternatives

Program
+

input

3. Binary-driven

Sniper

Whole- Profile and fin
program representative

pinball + DCFG

regions

PinPoint { Selective

GEMS

2. ELFie-driven

1. pinball-driven

MT pinballs

file re-logging

(Region
pinball

pinball2elf

Requirement: Execution invariant region specification
(PC+count for compute loop entries)

ELFie

Intel Software Development Emulator (/ntel SDE)

* The Intel® Software Development Emulator is a functional user-
level (ring 3) emulator for x86 (32b and 64b) new instructions built
upon Pin and XED (X86 encoder/decoder)

« Goal: New instruction/register emulation between the time when
they are designed and when the hardware is available.

« Used for compiler development, architecture and workload analysis,
and tracing for architecture simulators

* No special compilation required
« Supported on Windows/Linux/Mac OS
* Runs only in user space (ring 3)

How SDE Works

Based on Pin (http://pintool.intel.com) and
XED decoder/encoder

(https://qithub.com/intelxed/xed)

New instruction

. . \ Legacy instruction
Instrument new instructions

N|O|O N|O

@)

©)

N

v

— Add call to emulation routine

— Delete original instruction functions

SDE emulationJ

Emulation routine: U U

— Update native state with emulated state _ [

Emulated

state]

(51 http://www.intel.com/software/sde

http://pintool.intel.com/
https://github.com/intelxed/xed
http://www.intel.com/software/sde

Using SDE for PinPoints and LoopPoint

Prerequisites:

1. SDE build kit (version 9.0 or higher) from Intel
http://www.intel.com/software/sde

2. pinplay-tools from Intel
https://github.com/intel/pinplay-tools

3. SimPoint sources from UCSD
https://cseweb.ucsd.edu/~calder/simpoint/

4. Pinball2elf sources from Intel
http://pinelfie.org = https://github.com/intel/pinball2elf

http://www.intel.com/software/sde
https://github.com/intel/pinplay-tools
https://cseweb.ucsd.edu/~calder/simpoint/
http://pinelfie.org/
https://github.com/intel/pinball2elf

Getting ready for LoopPoint ...

1. Expand SDE build-kit : setenv SDE_BUILD KIT<path to SDE kit>
cp —r pinplay-tools/pinplay-scripts S SDE_BUILD KIT

3. Build simpoint (see pinplay-tools/pinplay-
scripts/README.simpoint)
* ¢p <path>/SimPoint.3.2/bin/simpoint S SDE_BUILD KIT/pinplay-

scripts/PinPointsHome/Linux/bin/

4. Build global looppoint tools
= setenv PINBALL2ELF <path to pinball2lef repo>
= cd pinplay-tools/GlobalLoopPoint
= /sde-build-GlobalLoopPoint.sh

SDE kit expanded for LoopPoint

sde-external-9.0.0-2021-11-07-lin

— intelé4
— sde-global-event-icounter.so
— sde-global-looppoint.so

—— pinplay-scripts
PinPointsHome/

L— Linux

L— bin

— LICENSE.simpoint

—— simpoint

Running LoopPoint for an OpenMP program

* cd pinplay-tools/dotproduct-omp # see README there
* make # builds dotproduct-omp = base.exe
» ./sde-run.looppoint.global _looppoint.concat.filter.flowcontrol.sh

~/pinplay-tools/dotproduct-omp bbv files (*.bb), PinPoints
— dotproduct.1_282016.Data :> file(*.csv, *.CSV)

-— dotproduct.1_282016.pp |_> Region pinballs

L— whole_program.1

‘_> Whole-program pinball + DCFG

@ Create LoopPoint region pinballs and replay them

Summary: Simulation of Multi-threaded Programs:

Tools & Methodologies

Where to simulate? How to simulate?

SDE + LoopPoint
Compute-loop iterations as
“Unit of work’

1. Pinball-driven
2. ELFie-driven
3. Binary-driven

Are the regions representative?

1. Simulation (Sniper) -based

2.ELFie-based / Binary+ROIPerf (not covered)

Whole-program performance vs
egion-predicted performanceg

13.20 to 13.30
13.30 to 14.30
14.30 to 15.00
15.00 to 15.50

15.50 to 16.45
16.45 to 17.30

Alen Sabu
Harish Patil

Wim Heirman

Alen Sabu
Alen Sabu

Overview of the tutorial

Tools & Methodologies: Pin, PinPlay, SDE, ELFies
Break

Simulation with Sniper / Sniper 8.0 GitHub release

Single-threaded and Multi-threaded Sampling, LoopPoint

Running LoopPoint Tools

LoopPoint and ELFies: Tools and Techniques to

Accelerate Simulations of Multi-threaded Applications
using Checkpointing

Alen Sabu!, Harish Patil?, Wim Heirman?, Trevor E. Carlson!

!National University of Singapore

2Intel Corporation

NUS

National University
of Singapore

intel

International Symposium on Computer Architecture, June 19th 2022, USA

BB &

Session 2

Simulation with Sniper /
Sniper 8.0 GitHub release

WIM HEIRMAN, PRINCIPAL ENGINEER (EXTREME SCALE COMPUTING)
INTEL CORPORATION

39

Architectural Trends in Processor Design

~
o
-
=
o
o)
]
B4
o
©
o
put
o
o
[
L
o]
2
)
0
C
2
'_

Intel internal analysis of Intel products.
Future projections based on products still in design.
Future transistor counts are projections and are inherently uncertain.

2000 2010 2020 2030

Fig. 1: Moore Law number of transistor per device: past, present, future

[Intel]
@ Source: https://www.intel.com

Moore’s Law predicts that
the number of transistors
per device will double
every two years.

First microprocessor had
2200 transistors — Intel

aspiring to have 1 trillion
transistors by 2030.

Architectural Trends in Processor Design

Main Goal: Meeting the ever-
increasing computational
demands while adhering to
stringent non-functional
requirements (ex: size, power)!

Fig. 2: Transistor innovations over time

@ Source: https://www.intel.com/

Exploration and Evaluation of New ldeas

e Architecture is rapidly evolving domain with a lot of new research directions.

A plethora of design choices are available:
= Ranging from the choice of components, the choice of operating modes of each
component, the choice of interconnects used, the choice of algorithms employed, etc.

* The process of exploration and evaluation of new ideas is often complex and time-
consuming.

Exploration and Evaluation of New ldeas

one do | pick?! I
Q BEST one.

)

Architect #1 Architect #2

Exploration and Evaluation of New ldeas

The Architect IRL

=
I/q@\ The Important Question:

. So how do we then explore new ideas quickly and
ﬁ‘\ evaluate them accurately to find the BEST idea?

/ 11\

|
|

The Architect’s Tools — Design Waterfall

architectures

benchmarks

considered

/applications

Analytical models

High-level simulation
Cycle-accurate

'ﬁ 101° 105 ~ simulation
1000
10
1
Traces /
Representative Microbenchmarks

applications

Program characteristics

Pre-silicon software
optimization,
co-design

design process (time)

Fast or accurate?

RTL simulators ———

1,000 x

Architectural sim. —

1,000 x

Simulation Time

Sniper —

>0% Simulation Error (%) 10% 0%

Fast or Accurate Simulation?

Cycle-accurate simulator Higher-abstraction level
simulator

performance
performance

> >
A B CDE A B CDE
architecture/ architecture/
software version software version

Fast or Accurate Simulation?

|
\
|
|

+ core 0
= corel
+ core 2
- core3
‘core 4
+ core 5

[- core 6

; - core 7
= § core 8

: - core 9
1 « core 10
[+ core 11
core 12

core 13
core 14

0 5,000 10,000 15,000 20,000 25,000
Time (milliseconds)

core 15

National University
of Singapore

Simulator taxonomy

Timing and functional . Integrated

simulator e Complex, incl. wrong-path, races

Functional Timing * Functional-first
simulator simulator * Trace-driven, or timing feedback

Timing =Tleilea-Il ° 1iming-directed, timing-first
simulator simulator * Step & verify

Mauer, Hill & Wood. Full-System Timing-First Simulation. SIGMETRICS 2002

Sniper History

e August 2010: Sniper forked from MIT Graphite
* November 2011: SC’11 paper, first public release
 Today:
= Interval and Instruction-window-centric core models
= 7000+ downloads from 100+ countries
= Active mailing list
= 1200+ citations (SC'11 & TACO’12 papers)

snipersim.org downloads by quarter

305
......

2012 2014 ;L‘I! 2018

........
2020 2022

Functional-first with timing feedback

* Functional-first
« Build on production-quality functional simulator / instrumentation tool
* Pin/SDE, Simics, SAE [x86], Spike, rv8 [RISC-V]
* 99/1 rule: 99% of instructions must be correct to get failure rate <1%
+ Extensible timing model
* 1/99 rule: modeling 1% of the ISA is enough to capture 99% of performance trends
« Easy to defeature / sweep accuracy
* From 1-IPC (fast, just counting instructions)...
* ...to near-cycle-accurate
» Perfect / oracle simulation (perfect caches, perfect branches, etc.)
« Timing feedback
» Multi-core, relative progress must be sync’d back to functional for e.g. load balancing

Simulation in Sniper

Execution-driven simulation

memory hierarchy
simulator

branch predictor
simulator

A single-process,

multithreaded -
workload (v1.0) functional

Trace-driven simulation

simulator
‘ | (Pin)
= .
< .
Processor cores — .
Multiple, - U
single-threaded
workloads (v2.0)

Simulation in Sniper with SIFT

Functional-first simulation + timing-feedback A bi-directional

single-thread
SIFT connection
memory —— m
hierarchy p==qil
simulator
=) | Pin
=) +SDE

Processor cores

|

Running Sniper

Configuration Region of interest markers in codeWorkload command line

$ run-sniper -c gainestown --roi -- ./test/fft/fft -p2

[SNIPER] Start

[SNIPER] === oo oo i e e oo e e oo adecoemomsoossacessseassssasaasees
[SNIPER] Sniper using Pin frontend

[SNIPER] Running pre-ROI region in CACHE_ONLY mode

[SNIPER] Running application ROI in DETAILED mode

[SNIPER] Running post-ROI region in FAST_FORWARD mode

[SNIPER] === oo oo i e e oo e e e oo acdecoemomsccsssacassseamssssaasaes

FFT with Blocking Transpose
1024 Complex Doubles
2 Processors

[SNIPER] Enabling performance models

[SNIPER] Setting instrumentation mode to DETAILED

[SNIPER] Disabling performance models

[SNIPER] Leaving ROI after 2.08 seconds

[SNIPER] Simulated 1.1M instructions, ©.9M cycles, 1.22 IPC

[SNIPER] Simulation speed 545.5 KIPS (272.8 KIPS / target core - 3666.2ns/instr)
[SNIPER] Setting instrumentation mode to FAST_FORWARD

PROCESS STATISTICS

[SNIPER] End
[SNIPER] Elapsed time: 5.97 seconds

NUS

National University
of Singapore

Simulation results

sim.out: Quick overview of basic performance results

| Core @ | Core 1
Instructions | 506505 | 505562
Cycles | 469101 | 468620
Time (ns) | 176354 | 176173
Branch predictor stats | |
num incorrect | 1280 | 1218
misprediction rate | 7.70% | 7.42%
mpki | 2.53 | 2.41
Cache Summary | |
Cache L1-I | |
num cache accesses | 46642 | 46555
num cache misses | 217 | 178
miss rate | 0.47% | 0.38%
mpki | 0.43 | 0.35
Cache L1-D | |
num cache accesses | 332771 | 332412
num cache misses | 517 | 720
miss rate | 0.16% | 0.22%
mpki | 1.02 | 1.42
Cache L2 | |
num cache accesses | 984 | 1090
num cache misses | 459 | 853

NUS

National University
of Singapore

Cycle stacks

 Where did my cycles go? CPI
= Cycles/time per instruction
= Broken up in components
* Base: ideal execution, no bottlenecks
* Add “lost” cycles do to each HW structure
= Normalize by either
* Number of instructions (CPI stack)
* Execution time (time stack)

* Different from miss rates: B DRAM
cycle stacks directly quantify the effect on performance B I-cache
* (Also: top-down analysis in VTune) L] Branch
B Bose

Miss rates vs. CPI stacks

>

Long-latency load fime

il longdatencyload |
Illlllllllllllf E?EEJEEIB

stall dependent ins.

cpi.base cpi.memory cpi.base
* Miss rate x Iatency overestimates penalty

* lgnores overlap with compute, indep. memory accesses

e Can lead to wrong conclusions / useless optimization

e CPI stack takes overlap into account

Advanced visualization

e Cycle stacks through time

-t

v @ imbalance-end
v @ imbalance-start
v B sync-unscheduled
v B sync-sleep

v B sync-futex

v I mem-dram

v @ mem-remote
v B mem-13

v B mem-12

v B mem-1d

v Wifetch

v [l branch

v @ serial

v Wissue-portd15
v Wissue-ports

v Bissue-port34
v Bissue-port2

v Bissue-portt

v Bissue-portd

v B depend-branch
v B depend-fip

v B depend-int

v B dispatch_width
v @ base

500

[}

ﬂ"__::m""_" [

CPI (%)

NUS

National University
of Singapore

Improved visibility vs. hardware

Hardware Simulator

e 2011: Ask architects for | #sit diff

void Core::init()

d hew F LO PS + registerMetric(“core”, _id, “flops”, &flops);
void Core::doCommit(MicroOp &uop)

pe rfO rm a n Ce CO u nte r + flops += uop.fp_operations();
$ make

¢ 2014. HaSWEH. brOken... $ run-sniper -- ./my_app

$ dumpstats | grep flops

e 2017: Skylake: success! | core.e.fiops 123056

core.l.flops 234567

Sniper 8.0 release on GitHub

* New in Sniper 8.0 release:

= Support for Intel SDE in addition to Intel Pin (emulation)

= License now allows for redistribution of Sniper (also Pin, SDE) in
Docker containers, artifacts, ...

= Available on GitHub: https://github.com/snipersim/snipersim

https://github.com/snipersim/snipersim

13.20 to 13.30
13.30 to 14.30
14.30 to 15.00
15.00 to 15.50

15.50 to 16.45
16.45 to 17.30

Alen Sabu
Harish Patil

Wim Heirman

Alen Sabu
Alen Sabu

Overview of the tutorial

Tools & Methodologies: Pin, PinPlay, SDE, ELFies

Simulation with Sniper / Sniper 8.0 GitHub release

Single-threaded and Multi-threaded Sampling, LoopPoint

Running LoopPoint Tools

LoopPoint and ELFies: Tools and Techniques to

Accelerate Simulations of Multi-threaded Applications
using Checkpointing

Alen Sabu!, Harish Patil?, Wim Heirman?, Trevor E. Carlson!

!National University of Singapore

2Intel Corporation

NUS

National University
of Singapore

intel

International Symposium on Computer Architecture, June 19th 2022, USA

BB &

Session 3

Sampled Simulation and LoopPoint

ALEN SABU, PHD CANDIDATE
NATIONAL UNIVERSITY OF SINGAPORE

63

Techniques to Simulate Faster

e Partial simulation and extrapolation
= Simulating the first 1 billion instructions in detail.

E E Detailed simulation

= Fast-forwarding to skip the initialization phase and then simulating 1 billion
instructions in detail.

Fast-forwarding using
E Functional simulation
= Fast-forwarding to skip the initialization phase, microarchitectural state
warming, and then simulating the 1 billion instructions in detail

_E Warming up the
microarchitectural state

Techniques to Simulate Faster

* Workload reduction
= Simulating for reduced input sets
= Simulating for reduced loop counts in workloads

Techniques to Simulate Faster

* Workload reduction
= Simulating for reduced input sets
= Simulating for reduced loop counts in workloads

* Problems with these techniques:

Techniques to Simulate Faster

* Workload reduction
= Simulating for reduced input sets
= Simulating for reduced loop counts in workloads

* Problems with these techniques:

= [Partial simulation + extrapolation] = fail to capture global variations in program
behavior and performance.

»100%
= 80%
s 60%

Techniques to Simulate Faster

* Workload reduction
= Simulating for reduced input sets
= Simulating for reduced loop counts in workloads

* Problems with these techniques:

= [Partial simulation + extrapolation] = fail to capture global variations in program
behavior and performance.

= [Workload reduction] = benchmark behavior varies significantly across several inputs
- do not reflect the actual performance.

Sampled Simulation to the Rescue!

 Sampling enables the simulation of selective representative regions

= Representative regions: subset of regions in the application that reflect the behavior of
the entire system when extrapolated

* How to select these “representative regions”?
= Targeted sampling (like in SimPoint)

(Full) program execution

= Statistical sampling (like in SMARTS) || Representative regions

Sampled Simulation Techniques: SimPoint

Large-scale program behaviors vary significantly over their run times.

Difficult to estimate performance using previously discussed techniques.

% 100%
= 80%
S 60%
S 40%
S 20%
& 0%

L1 data cache miss rate

— Instructions Per Cycle

=

Main idea behind SimPoint:

Automatically & efficiently analyzing program behavior over different phases of execution.

SimPoint uses Basic Block Vectors (BBV) as a hardware-independent metric for
characterizing the program behavior in different phases.

Sampled Simulation Techniques: SimPoint

e How SimPoint works:

= STEP 1: Basic block profiling
* Generating the Basic Block Vectors

= STEP 2: Clustering of Basic Block Vectors
 Random Projection
e K-means Clustering

= STEP 3: Identifying representative regions

Sampled Simulation Techniques: SimPoint

e How SimPoint works:

= STEP 1: Basic block profiling
* Generating the Basic Block Vectors

Sampled Simulation Techniques: SimPoint

A Basic Block Vector (BBV) is a single-dimensional array that maintains a count of how
many times each basic block was executed in each interval

BRANCH

Basic Block: A section of
code that has a single
point of entry and a
single point of exit.

LOOP! 5 iterations

0 1 2 3 4 5 6 < Indexed by Basic Block IDs

Basic Block Vector: 1 1 0 1 5 5 1 |+ Maintains the execution count for
each Basic Block

Sampled Simulation Techniques: SimPoint

e How SimPoint works:

= STEP 1: Basic block profiling
* Generating the Basic Block Vectors

Sampled Simulation Techniques: SimPoint

e How SimPoint works:

= STEP 1: Basic block profiling
* Generating the Basic Block Vectors

= STEP 2: Clustering of Basic Block Vectors
 Random Projection

Sampled Simulation Techniques: SimPoint

 The Basic Block Vectors obtained from the basic block profiling step have a very large number
of dimensions! (in the range of 2,000 -- 100,000)

100%
e “Curse of dimensionality”:

= Hard to cluster data as the number of dimensions increases. 80%7
= (Clustering time increases significantly wrt as the number of
dimensions increases.

)

S

ES
I

40%

Percent of Max K

e Solution: Reduce the number of dimensions to 15

. . . . 20%
using Random Linear Projections.

0% +——— e e e
0 10 20 30 40 50
Number of Dimensions

Sampled Simulation Techniques: SimPoint

e How SimPoint works:

= STEP 1: Basic block profiling
* Generating the Basic Block Vectors

= STEP 2: Clustering of Basic Block Vectors
 Random Projection
e K-means Clustering

Sampled Simulation Techniques: SimPoint

K-means clustering:

* |Initialize k cluster centers by randomly choosing k points from the data.

* Repeat until convergence:

= Do for all data points:
* Compare the distance from all k cluster centers.
e Assign it to the cluster with the closest center. o

= Update cluster center to the centroid of the newly
assigned memberships.

Choosing k: The clustering that achieves a BIC? score that is at least 90% of the

spread between the largest and smallest BIC score is chosen.

@ 1Bayesian Information Criterion

Sampled Simulation Techniques: SimPoint

e How SimPoint works:

= STEP 1: Basic block profiling
* Generating the Basic Block Vectors

= STEP 2: Clustering of Basic Block Vectors
 Random Projection
e K-means Clustering

= STEP 3: Identifying representative regions

Sampled Simulation Techniques: SimPoint

* Representative region = single simulation point
= BBV with the lowest distance from the centroid of all cluster centers.

* Representative regions = multiple simulation points
= For each cluster, choose the BBV that is closest to the centroid of the cluster.

= SimPoint = LongSP === Multiple = Full

o 27
o
— 1_
0_ o jo) o o o o = > «Q c 172} « s
i &€ § 3 3§ 2 §¢§ § &8 § 3§ & % £ &£
: 7 5 - 2 : oy 3 . X : :
= = & @ = @ @ 1} = @
5 =S g, 3 3 3 & g, = % 3, =3 = e 3,
3
2 -
4
— 1_
0 o o q @@@@@@@@@ 3 el ° o g é <
& -+ 2 3 % 8 8 8 8 8 & & 2 2 % % 5 % %
£ 03 0T e 2 3
s a 2 3 = N S 2 s 3 a 3 3 T S
S 3 < = o 2 s 3 2 = S 3 o N z = e, g c

Sampled Simulation Techniques: SMARTS

* Main idea behind SMARTS:
= Using systematic sampling:
e To identify a minimal but representative sample from the population for

microarchitecture simulation
* To establish a confidence level for the error on sample estimates

= Simulating using two modes :

* Detailed simulation of sampled instructions = accounting for all the
microarchitectural details.

* Functional simulation of remaining instructions = accounting only for the
programmer-visible architectural states (ex: registers, memory).

Sampled Simulation Techniques: SMARTS

Start sampling

SMARTS uses Systematic Sampling:

Total sample size:
n = N/k units
OR
nx U =n x N/k instructions

j+ 2k
|

Each unit
at offset | consists of U
1 instructions
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
1 1

Sample at a fixed interval
of length k units or k x U
instructions, where
k=N/n

N
| | <K |
| T [T J | H

Sampled Simulation Techniques: SMARTS

Simulation:

U(k -1) = W instructions are
functionally simulated and large
structures may be warmed

U instructions are measured as a
sampling unit using detailed
simulation

W instructions of detailed

simulation warm state before
each sampling unit

characteristics

BNUS

National University
of Singapore

Sampled Simulation Techniques: SMARTS

 Evaluation results:

= Average error:

* 0.64% for CPI By simulating fewer than 50 million
e 0.59% for EPI instructions in detail per benchmark.

= Speedup over full-stream simulation:

* 35x for 8-way out-of-order processors
e 60x for 16-way out-of-order processors

Simulation in the Post-Dennard Era

 Modern architectures require smarter simulators

Intel's Alder Lake die shot.
Image source: WikiChip

BNUS

National University
of Singapore

Simulation in the Post-Dennard Era

 Modern architectures require smarter simulators [s = T = s

10° +

.| 1year

* Microarchitectural simulation is slow
= NPB (D), SPEC CPU2017 (ref) can take years
= Solution — Simulate representative sample

. 1 month

102 4

. 1 day
10% 4

Sim. Time (in hours)

1004 - 1 hour

1071 4

NPB.B NPB.C NPB.D SPEC.Train SPEC.Ref

Benchmarks with 8 threads, static schedule,
passive wait-policy, simulated at 100 KIPS.

Simulation in the Post-Dennard Era

Modern architectures require smarter simulators N e

Microarchitectural simulation is slow
= NPB (D), SPEC CPU2017 (ref) can take years |
= Solution — Simulate representative sample

102 4

Sim. Time (in hours)

10! +

1004

1071 4

? Ca n We fu rt h e r b ri ng NPB.B NPB.C NPB.D SPEC.Train SPEC.Ref
. . . Benchmarks with 8 threads, static schedule,
e down simulation time

passive wait-policy, simulated at 100 KIPS.

Simulation in the Post-Dennard Era

Modern architectures require smarter simulators
Microarchitectural simulation is slow

= NPB (D), SPEC CPU2017 (ref) can take years
= Solution — Simulate representative sample

? Can we further bring
e down simulation time

B Detailed Sim I Time-based Sampling I BarrierPoint B LoopPoint

NPB.B NPB.C NPB.D SPEC.Train SPEC.Ref

Benchmarks with 8 threads, static schedule,
passive wait-policy, simulated at 100 KIPS.

Extending Single-threaded Techniques

* SimPoint or SMARTS > Instruction count-based techniques
= Works well for single-threaded applications

Simulation run 1

La JLo JL e J d J e]
100M i 100M : 100M : 100M : 100M
ins ins ins ins ins

time

Extending Single-threaded Techniques

* SimPoint or SMARTS > Instruction count-based techniques
= Works well for single-threaded applications

Simulation run 1 Simulation run 2

B BT B] (B B arm s arem

100M i 100M i 100M : 100M : 100M 100M i 100M i 100M : 100M : 100M
ins ¢ ins i ins i ins I ins ins ¢ ins i ins i ins i ins
time time

Extending Single-threaded Techniques

* SimPoint or SMARTS > Instruction count-based techniques
= |nconsistent regions for multi-threaded applications

Simulation run 1

o a JLb Jl e J[d [e |
mliw Jlv Jlw JUx Jy

100M 100M 100M 100M 100M
ins ins ins ins ins

Extending Single-threaded Techniques

* SimPoint or SMARTS > Instruction count-based techniques
= |nconsistent regions for multi-threaded applications

Simulation run 1 Simulation run 2

ro (e () e () (e | D e e e
r ()))) () |) G)))

100M 100M 100M 100M 100M 100M 100M 100M 100M 100M
ins ins ins ins ins ins © ins { ins i ins | ns
time time

Multi-threaded Sampling is Complex

Instruction count-based Threads progress differently
techniques are unsuitable! due to load imbalance

Representing parallelism Differentiating thread
among threads waiting from real work

@ 1Alameldeen et al., “IPC Considered Harmful for Multiprocessor Workloads”, IEEE Micro 2006

Multi-threaded Sampling is Complex

Identify a unit of work that is invariant across executions

@ TAlameldeen et al., “IPC Considered Harmful for Multiprocessor Workloads”, IEEE Micro 2006

Multi-threaded Sampling: Prior works

FlexPoints

a Designed for non-synchronizing throughput workloads

Q Instruction count-based sampling T
CPUO
cPu1 (IS S
e Assumes no thread interaction cPU2 | —/< — —
Sampling unit Time —»

e Requires simulation of the full application

@ Wenisch et al., “SimFlex: statistical sampling of computer system simulation”, IEEE Micro’06

Multi-threaded Sampling: Prior works

Time-based Sampling

a Designed for synchronizing generic multi-threaded workloads

Q Applies to generic multi-threaded workloads

A A y AUNS AN

e Extremely slow) (
é]f\uﬁv‘/\ W
Requires simulation of the full application L=< vt [oo]

@ Carlson et al., “Sampled Simulation of Multithreaded Applications”, ISPASS'13
Ardestani et al., "ESESC: A fast multicore simulator using time-based sampling." HPCA, 2013

Multi-threaded Sampling: Prior works

BarrierPoint

a Designed for barrier-synchronized multi-threaded workloads

Q Scales well with number of barriers - |

One-time or
per-simulation costs

Functional
Simulation

N N ;
Application Analysis Clustering

L. Data

e Slow when inter-barrier regions are large e] funime || Dealed |, -

' l Per-simulation costs

Barrier
Barrier

Tl

ol a |
v

b

@ Carlson et al., ”BarrierPoint: Sampled simulation of multi-threaded applications”, ISPASS’ 14

Multi-threaded Sampling: Prior works

TaskPoint

a Designed for task-based workloads

)) #pragma omp task
Q Uses analytical models to improve accuracy label (task type 1)
do_something () ;

e Works only for the particular workload type

warmup measure sample fast-forward warmup measure sample
N

Thread 1 ----- - [AdB., J.....El
------ -------

0 t, 3 ‘q L L Time

Thread 2

@ Grass et al., “TaskPoint: Sampled simulation of task-based programs”, ISPASS’16

The Unit of Work

SimPoint?!
SMARTS?

BarrierPoint> ‘ Inter-barrier regions
TaskPoint® = Task instances

‘ Instruction count Flex Points3 ‘ Instruction count

Time-based sampling* =) Time

ISherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS’02
2Wunderlich et al., “SMARTS: Accelerating Microarchitecture Simulation via Rigorous Statistical Sampling”, ISCA’03
3Wenisch et al., “SimFlex: statistical sampling of computer system simulation”, IEEE Micro’06

4Carlson et al., “Sampled Simulation of Multithreaded Applications”, ISPASS’13
@ >Carlson et al., “BarrierPoint: Sampled simulation of multi-threaded applications”, ISPASS’14

®Grass et al., “TaskPoint: Sampled simulation of task-based programs”, ISPASS’16

The Unit of Work

We consider generic loop iterations as the unit of work

ISherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS’02
2Wunderlich et al., “SMARTS: Accelerating Microarchitecture Simulation via Rigorous Statistical Sampling”, ISCA’03
3Wenisch et al., “SimFlex: statistical sampling of computer system simulation”, IEEE Micro’06

TmNUS

National University
of Singapore

4Carlson et al., “Sampled Simulation of Multithreaded Applications”, ISPASS’13
@ >Carlson et al., “BarrierPoint: Sampled simulation of multi-threaded applications”, ISPASS’14

5Grass et al., “TaskPoint: Sampled simulation of task-based programs”, ISPASS’16

Overall Methodology

Overall Methodology

Overall Methodology

Overall Methodology

Program Looppoints
binary, inputs Specification

(%)
)
c
o
(o8
o
o
o
—

Specification

Overall Methodology

9JB[NUILS 0} SISYA dje[nUIS 0} MOY]

Overall Methodology

Program Looppoints
binary, inputs Specification

Checkpoint
driven

Region
Checkpoints

Overall Methodology

Program Looppoints
binary, inputs Specification

Checkpoint
driven

Region
Checkpoints

Binary driven

Loop-based Profiling

‘Where to simulate

Program
binary, inputs

Looppoints
Specification

Region
Checkpoints

Binary driven

How to simulate

National University
of Singapore

@‘G: Dynamic Control-Flow Graph

Loop-based Profiling

[cpeoine
Specification

Checkpoint
driven 4

3. Checkpoints
Det

5. Performance
Generation n

Extra

Binary driven

NUS

National University
of Singapore

G: Dynamic Control-Flow Graph

Loop-based Profiling

Application
Execution
Recording

Looppoints

Specification

2 Checkpoint
< 4. (Warmup +

| 3. Checkpoints | Region driven De((m‘gd REZ‘GL 5. Performance
a Generation Checkpoints S Extrapolation
15 o Binary driven

@G: Dynamic Control-Flow Graph

ANUS

National University
of Singapore

Loop-based Profiling

Application
Execution
Recording

Per-thread
Feature
Vectors

@G: Dynamic Control-Flow Graph

Loop-based Profiling

@G: Dynamic Control-Flow Graph

Loop-based Profiling: Flow-control

* Load Imbalance can affect profiling

= Make sure threads make equal forward progress -

* Implementation: Control the forward progress of threads S“C(‘;CGGCT;ZF::)‘O”

= Synchronize threads (barriers) externally at regular intervals

Synchronization

= Make sure all threads execute similar number of instructions Filtering

Loop-based Profiling: Flow-control

* Load Imbalance can affect profiling

= Make sure threads make equal forward progress -

* Implementation: Control the forward progress of threads S““i‘;gigir:tt)‘”

= Synchronize threads (barriers) externally at regular intervals

Synchronization

= Make sure all threads execute similar number of instructions Filtering
Flow-control
to
t
ta
t3
Start

Loop-based Profiling: Flow-control

* Load Imbalance can affect profiling

= Make sure threads make equal forward progress -

* Implementation: Control the forward progress of threads S“‘;‘;C‘i‘igif:tt)m”

= Synchronize threads (barriers) externally at regular intervals

Synchronization

= Make sure all threads execute similar number of instructions Filtering
Flow-control
to
t
ta
t3
Start

Loop-based Profiling: Sync Filtering

* Goal: Filter out synchronization during profiling
= Profiling data should contain only real work

Flow-control

Slice Generation
(PC, count)

o -

600

500

400

300

200

100 I

.o & I ol
f—)/
'\/. O

Bill
~
=]
S

Instruction count

Em
«+%

\\ef’ (_) «-\3’
® NI g 'b v» o < »
Gf & f& b”) 'f"Q ‘s@ & o@ c)“' © ®
I v © © o Q‘g
N & © &

Loop-based Profiling: Sync Filtering

* Goal: Filter out synchronization during profiling

Flow-control

= Profiling data should contain only real work

Slice Generation

 Solutions (PC, count)

= Automatic detection using loop analysis? -
= | Ignore sync library code (Ex. 1ibiomp5.so, libpthread.so)

@ 1Li et al., "Spin detection hardware for improved management of multithreaded systems," TPDS, 2006

Loop-based Profiling: Sync Filtering

lgnore sync Iibrary code (EX. libiomp5.so, libpthread. so) Flow-control

Slice Generation
(PC, count)

Application execution

main math main main sync sync main main sync main
image lib image image lib lib image image lib image

data

v

time

@ 1Li et al., "Spin detection hardware for improved management of multithreaded systems," TPDS, 2006

Loop-based Profiling: Sync Filtering

lgnore sync Iibrary code (EX. libiomp5.so, libpthread. so) Flow-control

Slice Generation
(PC, count)

Application execution

main math main main sync sync main main sync main
image lib image image lib lib image image lib image

data

v

time

@ 1Li et al., "Spin detection hardware for improved management of multithreaded systems," TPDS, 2006

Loop-based Profiling: Slice Generation

* Region start/stop
= Global instruction count reaches threshold (#threads X 100 M)

= Region boundary at a loop entry/exit — use DCFG analysis -

Synchronization
Filtering

Flow-control

Loop-based Profiling: Slice Generation

* Region start/stop
= Global instruction count reaches threshold (#threads X 100 M)

= Region boundary at a loop entry/exit — use DCFG analysis -

* Looppoint region markers (PC, countp)

Flow-control

Synchronization
Filtering

= Global count of loop entries: invariant across executions
= Simulate the same amount of work

~_

Program
execution

Loop-based Profiling: Slice Generation

* Region start/stop
= Global instruction count reaches threshold (#threads X 100 M)

= Region boundary at a loop entry/exit — use DCFG analysis -

* Looppoint region markers (PC, countp)

Flow-control

Synchronization
Filtering

= Global count of loop entries: invariant across executions
= Simulate the same amount of work

(PCy, countl)l: Region/Slice :l(PCZ, count,)
~_
|
Program I
execution | Threshold Instructions >
1 1

Loop-based Profiling: Slice Generation

¢ BaS|C BlOCk (BB) BB Example Assembly Code
= Section of code with single entry and exit Bl o,

addl zero, t12, s6
subl t7, O0x1, t7
cmpeq s6, 0x25, vO
cmpeq s6, 0, tO

bis v0, t0, vO

bne v0, 0x120018c48
B subl t7, O0x1, t7
cmple t7, 0x3, t2

beg t2, 0x120018b04
C |ble t7, 0x120018bb4

ID: A B C

@ Image source: Sherwood et.al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS 2002

Loop-based Profiling: Slice Generation

¢ BaS|C BlOCk (BB) BB Example Assembly Code
. . . . Al 1 2, 0x8, t4
= Section of code with single entry and exit nd a2, Omtr. 12
. addl zero, t12, s6
e Basic Block Vector (BBV) A fswre70xt, w7
Lt cmpeq s6, 0x25, vO
= Execution fingerprint of an application interval - ped ser O
. . -7 b 0, 0x120018c48
= \ector with one element for each basic bjeck o
i cmple t7, 0x3, t2
i beq t2, 0x120018b04
/ C [ble _ - % —0%120018bb4
A : _______ - | ..
BB Exec Count: < 0; ">
weigh by Block Size: 1, .>

@ Image source: Sherwood et.al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS 2002

Loop-based Profiling: Slice Generation

¢ BaS|C BlOCk (BB) BB Example Assembly Code
. . . . A srl a2, 0x8, t4
= Section of code with single entry and exit and a2, OxEE, t12
. addl zero, t12, s6
e Basic Block Vector (BBV) subl t7, Ox1, t7
cmpeq s6, 0x25, vO
. m 6, 0, t0
= Execution fingerprint of an application interval S SN

bne v0, 0x120018c48

B subl t7, O0x1, t7
cmple t7, 0x3, t2

= \ector with one element for each basic block

= Exec Wt = entry count X number of instructions beq t2. 0x120018504
C |ble t7, 0x120018bb4
ID: A B C
BB Exec Count: < 1, 20, 0, .>
weigh by Block Size: < 8, 3, 1, .>
BB Exec Wt: < 8, 60, 0, .>

@ Image source: Sherwood et.al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS 2002

Loop-based Profiling: Slice Generation

BB Example Assembly Code
A srl a2, 0x8, t4
and a2, Oxff, t12
addl zero, t12, sé6
subl t7, Ox1, t7
cmpeq s6, 0x25, vO
cmpeq s6é, 0, tO
[A:8, B:60, C:0, .] bis v0, £0, v0
BBV bne v0, 0x120018c48
B subl t7, Ox1, t7
cmple t7, 0x3, t2
beqg t2, 0x120018b04
C |ble t7, 0x120018bb4
ID: A B C
BB Exec Count: < 1, 20, 0, .>
weigh by Block Size: < 8, 3, 1, .>
BB Exec Wt: < 8, 60, 0, .>
NUS

@ Image source: Sherwood et.al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS 2002

National University
of Singapore

Loop-based Profiling: Vector Concatenation

e Ratio of instructions per thread may differ

pop2_s.1 active xz_s.2 active Ibm_s.1 active
1.0 —— thread0 —— thread2 —— thread4 —— thread6 1.0 —— thread0 —— threadl —— thread2 — 3 1.04 —— thread0 —— thread2 —— thread4 —— thread6
Vﬂ— threadl —— thread3 —— thread5 —— thread7 —— threadl —— thread3 ~—— thread5 —— thread?7
0.8 0.8 0.8
(=] o o
=1 =] =]
o c e
< 0.6 < 0.6 £ 0.6
> > =1
o o (=]
L L =
3 0.41 T 0.4 = 0.4
o o o
k=1 k= S
021 02 021 AR R R
0.0 0.0 0.04
0 50 100 150 200 250 300 350 0 10 20 30 40 0 100 200 300 400 500 600 700
global slice number global slice number global slice number

BNUS

National University
of Singapore

Loop-based Profiling: Vector Concatenation

e Ratio of instructions per thread may differ
* Global-BBVs: Concatenate per-thread BBVs to larger Global BBV

BB Example Assembly Code BB Example Assembly Code
A |srl a2, 0x8, t4 A |srl a2, 0x8, t4
and a2, Oxff, t12 and a2, Oxff, t12
addl zero, t12, s6 addl zero, t12, s6
subl t7, Ox1, t7 subl t7, 0x1, t7
cmpeq s6, 0x25, vO cmpeq s6, 0x25, vO
cmpeq s6, 0, tO cmpeq s6, 0, tO
bis v0, t0, vO bis v0, t0, vO
bne v0, 0x120018c48 bne v0, 0x120018c48
B subl t7, Ox1, t7 B subl t7, 0x1, t7
cmple t7, 0x3, t2 cmple t7, 0x3, t2
beq t2, 0x120018b04 beq t2, 0x120018b04
C |ble t7, 0x120018bb4 C |ble t7, 0x120018bb4
M subl t7, O0x1, t7 M subl t7, Ox1, t7
gt t7, 0x1200180b90 gt t7, 0x120018b90

Loop-based Profiling: Vector Concatenation

BB Example Assembly Code -

a1 n FaY (o) =0 I
A 1 BB Example Assembly Code |[.~ ’l_ _le_r_e_a'ij_ 9_ -
4 A srl a2, 0x8, t4
g and a2, Oxff, t12

addl zero, t12, s6
subl t7, 0x1, t7
cmpeq s6, 0x25, vO
cmpeq s6, 0, tO

o 1~ I~ O 0

B bis v0, t0, vO
) bne v0, 0x120018c48
H B subl t7, 0Ox1, t7
c 14 cmple t7, 0x3, t2
beg t2, 0x120018b04
C |ble t7, 0x120018bb4
M

subl t7, O0x1, t7
gt t7, 0x120018b90

Loop-based Profiling: Vector Concatenation

BB Example Assembly Code -

N fs | D Fal Q

BB Example Assembly Code (.~ |

BB ID: A B C 4 A [srl a2, 0x8, t4
. g and az, Oxff, t12
BB Exec Wt: < 8, 60, o, .. > C adl cevo. t12. s6
q subl t7, Ox1, t7
4 cmpeq s6, 0x25, vO0
1 cmpeq s6, 0, tO
e bis v0, t0, vO
; bne v0, 0x120018c48
1 B subl t7, 0x1, t7
. ¥ cmple t7, 0x3, t2
BB ID: N o P beqg t2, 0x120018b04
BB Exec Wt: <5, 9, 3, .> {7C |ble ©7, 0x1200180b4
'k
q
M subl t7, Ox1, t7

gt t7, 0x120018b90

Loop-based Profiling: Vector Concatenation

BB Example Assembly Code [~ T LT - -
a1 n FaY (o) =0 I
N 1 BB Example Assembly Code |[.~ ’l_ _Tlh_r_e_a_d_ (_)_ -
BB ID: A B C 3 A srl a2, 0X8/ t4
. g and az, Oxff, t12
BB Exec Wt: <8 ’ 60 ’ 0 roe > q addl zero, t12, s6
d subl t7, O0x1, t7
0x25, vO
o o o . . . 0, toO
[A.8, Bo60, c.o, cee N05[0.90’ P°3’ '"] to, VO
Global-BBY @ 0x120018c48
d B |supl t7, ox1, t7
. S F cmple t7, 0x3, t2
BB ID: N O P beq £2, 0x1200180b04
BB Exec Wt: <5, 90, 3, . > { ¢ [ble t7, 0x120018bbA
a
7 M subl t7, 0x1, t7
gt t7, 0x120018b90

A LoopPoint Region

638.imagick_s/magick/morphology.c

2842 #if defined(MAGICKCORE_OPENMP_SUPPORT) 31 ii
2843 #pragma omp parallel for schedule(static,4) shared(progress,status) \ ::
2844 magick_threads(image,result_image,image->rows,1) Uz- . ‘ ' . A . ‘ l . l . .ii‘ ﬁ ‘ l ‘ h . . ‘ ‘ l ‘ h . A ‘ . ﬂ ’ n ‘ A . ‘ l . (j
2845 #endif a i1
2846 for (y=0; y < (ssize_t) image->rows; y++) 14 ii
2847 { o
0 500M 1000M 1500M 2000M 2500M 3000M
2886 for (x=0; x < (ssize_t) image->columns; X++) Time (cycles)
2887 {
3021 for (v=0; v < (ssize_t) kernel->height; v++) {
3022 for (u=0; u < (ssize_t) kernel->width; u++, k--) {
3034 } /*u ¥/
3037 } /* v o*/
3342 } /F x ¥/

3357} /*y */

638.imagick s, train input, 8 threads

ANUS

National University
of Singapore

A LoopPoint Region

638.imagick_s/magick/morphology.c

TT
2842 #if defined(MAGICKCORE_OPENMP_SUPPORT) 34 2
2843 #pragma omp parallel for schedule(static,4) shared(progress,status) \ ::
[I8}
2844 magick_threads(image,result_image,image->rows,1) o 2 . ' A ‘ l l . :: ‘ ﬁ l h . ‘ l h A ‘ . ﬂ n A ‘ l
2845 #endif a i
[}
2846 for (y=0; y < (ssize_t) image->rows; y++) » 14 | |
2847 { AN]
N 0-]
""" N 0 500M .- “1000M T == -1500M_ __ 2000M 2500M 3000M
2886 for (x=0; x < (ssize_t) image->columns; x++) \\ - Time (cyclés) =~ ~~--____
2887 { S e e
\ it
3021 for (v=0; v < (ssize_t) kernel->height; v++) { \\ 3]
3022 for (u=0; u < (ssize_ t) kernel->width; u++, k--) { \\ E E
< <]
...... S 213 =]
g2 e e e ————-———0
3034 }/F U e o e = = = = === D R 8
10)
...... 149 Q
3037 } /* v o*/
0.
* * T T T T T T
S LA 0 5M 10M 15M 20M 25M
3357} /*y */ Time (cycles)

638.imagick s, train input, 8 threads

NUS

National University
of Singapore

Identifying Simulation Regions

* Group similar Global-BBVs

Identifying Simulation Regions

 Group similar Global-BBVs

= K-means algorithm: Centroid-based clustering

Identifying Simulation Regions

 Group similar Global-BBVs

= K-means algorithm: Centroid-based clustering

* Vector closest to centroid is the representative

Identifying Simulation Regions

Centroid

 Group similar Global-BBVs
= K-means algorithm: Centroid-based clustering

* Vector closest to centroid is the representative
e Simulation regions (looppoints)

= Checkpoints generated from the application
= Use (PC, countpc) information of representatives

v,
Representative regions

Application Reconstruction

e Representative regions (looppoints) are simulated in parallel »
* Warmup handling

= Simulate a large enough warmup region before simulation region

Application Reconstruction

e Representative regions (looppoints) are simulated in parallel »
* Warmup handling

= Simulate a large enough warmup region before simulation region
* Application performance

= The weighted average of the performance of simulation regions

repy

total runtime = Z runtime; X multiplier;

i=rep,

Application Reconstruction

»

m "
Yisoinscount;

multiplier; = —
inscount;

/ m regions represented by j™ looppoint

repy /
total runtime = Z runtime; X multiplier;

i=rep,

Experimental Setup

 Simulation Infrastructure
= Sniper! 7.4 >>I OpenMP

* Mimics Intel Gainestown 8/16 core SNi per Frebling HPG since 1997

 Benchmarks and OpenMP settings '
= SPEC CPU2017 speed benchmarks
* |Input: train; Threads: 8; Wait policy: Active, Passive
= NAS Parallel Benchmarks (NPB)
* |Input: Class C; Threads: 8, 16; Wait policy: Passive

= OpenMP scheduling policy: static

@ 1Carlson et.al., “Sniper: Exploring the level of abstraction for scalable and accurate parallel multi-core simulation”, SC 2011
Image source: https://www.openmp.org/; https://www.spec.org/cpu2017/ ; https://www.nas.nasa.gov/

SPEC CPU2017 Analysis

Application barrier reduction atomic atomic | atomic
. :: tvarern) | P2l nowai) | (loat8_a | (floatd | (fixedd_
i dd) _max) add)

Yes Yes

Yes Yes Yes

Yes Yes Yes Yes Yes Yes

Yes Yes Yes

Yes Yes Yes Yes Yes

Yes Yes Yes Yes

Yes Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes

Source: SPEC CPU®2017 documentation index

Workload Type Supported

e Software

= Static OpenMP scheduling (OMP_WAIT_POLICY=STATIC)

= Homogeneous parallel threads doing similar amount of work
 Hardware

= Simulated hardware needs to be homogeneous

= No dynamic hardware events supported

"
=
S
"
)
14
>
O
©
S
S
O
O
<

Prediction error wrt. performance of whole application

8 threads

’

SPEC CPU2017 with train inputs

7'SZX°LS9
1'S-ZX'LS9
T'S-swol 69
T'S-PEAIU0I0Y 619
T's-qeuyy9
T's-qeu’yv9
T's-1bewr’gey
1's-zdod’'8z9
T's-ywed'/z9
T'S-HM'TZ9

T's-wql'e6T19

T'S-NSS@n1des'/09

Z'S-SanemMd €09

T'S-seAMq’'E09

HEl passive

[active

T T T T T T T 1
0o ~ © N F M N & O
%4041 swijunJ ‘sge

ational Uni
of Singapore

=ANUS

”

'S ZX°[S9
n
1S 2X'£59 =)
Z

1'S swol 4G9

National University

of Singapore

T'S PEIU0I0s 6179
7's qeu'yy9

T'Ss qeuvt9

T's ¥oibewrgeg
T's ¢zdod'gz9

T's ywes'/z9
T'S IM 129

1's wqre19

(%]
gl
@©
4]
=)
..hL nW W T'S NSSanIded'£09
Se) Y|
~ 0 © _
2 ©c o 2'S SaAeMQq'£09
S
g - - 1°'S S9AeMq'€09
£
c T T ; |
= @ © < ~ o
m o o o o o
+ . .
< HIp 'sge PidIN Yyduedq
=
2
™~
S L 2's-2x° L9
o
N
= - 152X LS9
o
(&)
O - T°S-SWoJvS9
w
o
n

F T'S-pEIU010) 619
- Z's-qeuyt9

F T's-qeuvt9

F T's-¥d1bewi'ge9
I 1°'s-zdod 879

- T's-ywed’/z9
FT'S-HM TZ9

F T's-war619

 T'S-NSSgn1oes'/09

active
passive

L z's-saAemq €09

L 1's-senemq'€09
T T T T T T T 3
[ce) ~ © [Te] < m o — o

0410412 awiunl ‘sge

Prediction error wrt. performance of whole application

"
=
S
"
)
14
>
O
©
S
S
O
O
<

'S ZX°[S9

1'S ZX'LS9

of Singapore

1'S swol 4G9

"2 H

g
£
S
s
g
5
5
z

m

@

T'S PEIU0I0s 6179
7's qeu'yy9

T'Ss qeuvt9

T's ¥oibewrgeg
T's ¢zdod'gz9

T's ywes'/z9

'S UM TZ9

1's wqre19
1'S NSSgn12e3°/09

Z'S SOABM(€09

I active
HE passive

1'S S9ARM(€09

.8
0.4
0.2
0.0 -

DdIN Yyouelq

- ¢'S-ZX'LS9
1'S-ZX'LS9

- T'S-swol'$G9

SPEC CPU2017 with train inputs, 8 threads

r T'S-Pe>lu0304'6%9

- Z’'s-qeu'yv9

Active: 2.33%
Passive: 2.23%

- T'S-qeu'yv9

F T's-¥d1bewi'ge9

- 1's-zdod gz9

r T'S-ywed'[Z9

- T'S-HIM'TZ9

r T'S-wqI'6T9

 T'S-NSSgn1oes'/09

active
passive

L z's-saAemq €09

L 1's-senemq'€09
T T T T T T T 3
[ce) ~ © [Te] < m o — o

0410412 awiunl ‘sge

Prediction error wrt. performance of whole application

"
=
S
"
)
14
>
O
©
S
S
O
O
<

Changing Thread Count

Runtime prediction error wrt. whole application runtime

NPB 3.3 with Class C inputs, 8 and 16 threads, passive wait-policy

[8 cores
5|l 16 cores

abs. runtime error%
w

bt cg ep ft is lu mg sp ua

Changing Thread Count

Runtime prediction error wrt. whole application runtime

NPB 3.3 with Class C inputs, 8 and 16 threads, passive wait-policy

8 cores: 2.87%
16 cores: 1.78%

[8 cores
5|l 16 cores

abs. runtime error%
w

bt cg ep ft is lu mg sp ua

Speedup

Parallel and serial speedup achieved for LoopPoint

SPEC CPU2017 with train inputs, 8 threads, active wait-policy

103 4 -
Serial

I Actual

m Theoretical

Parallel

[Actual
I Theoretical

Speedup

~ N — > > > > iy = N ~ ~ ~ N
Wl wl V'Al ml wn ml m‘ V’I V’I wl UII wl UII wl
o g =4 < o~ ~ Q Eel o n N N
g g 17 .g E S Q 2 © © M £ X X
H H vl 2 > 5 9 =) c < = 3] ~ ™~
g g o o = o Q © < < c = 0 0
a2 & 2 b © ~ x £ 3 3 2 b © ©
2 2 5 N N = © © 5 n

o0 o ® > © o i ©
o o I8} m o
© © ~ © 2

o ©

©

Speedup

Parallel and serial speedup achieved for LoopPoint

SPEC CPU2017 with train inputs, 8 threads, active wait-policy

Serial
I Actual
m Theoretical
Parallel
[Actual
I Theoretical
T T R R s R R S B S S B B 1 |-9
O T B T - R BB B Serial: 9x
[[x x
s s 2 2 > § g§ g £ E 2 6 £ = .
2% 25 % 2 f sz oz 5 ;B oy Parallel: 303x
™ ™ ° Q © o L ©
o o S © 0 o
8 o

Speedup

Parallel and serial speedup achieved for LoopPoint

NPB with Class C inputs, 8 and 16 threads, passive wait-policy

10° o N
Serial 8 cores
Actual 10°] . Serial
Theoretical m Parallel
Parallel 16 cores
g 107 4 Actual 2 [Serial
S Theoretical 3 1024 I Parallel
() [}
Q Q
2 n
10! o 10 4

A N H H H H H M H N M H AN

w w v w v w v w w w w w w w

] 3 =4 € ‘t <t o & o o o) N Q‘

s ¢ 2 5 = £ g 2 e ¢ 9 £ X X

2 2 = o N S = @ < < c 2 0 n

g E =1 o 2 ~ :5 £ 3 3 S j © ©

™) o e © o L ©

o o o m o

o o
o

BNUS

National University
of Singapore

Speedup

Parallel and serial speedup achieved for LoopPoint

NPB with Class C inputs, 8 and 16 threads, passive wait-policy

10° 4 .
Serial 8 cores |
Actual 10° 1 . Seria
Theoretical m Parallel
Parallel 16 cores
o 10° Actual a s Serial
= Theoretical| S 1024 I Parallel
v [}
& &
10! 10% 4
8 core .
Serial: 49x cg e f s I mg sp ua

S L L

m‘ m‘ u\‘ ui‘ m‘ ui‘ m‘ m‘ m‘ w m‘ w

$ $ =2 € t < o ﬁ Qo Qo ko) [0}

¢ ¢ 2 5 s £ g g &g T 2 ¢ . 16 core .

st ¢ 8 5 4 8§ &8 8 ¢ § % E arallel: X . X

2) 2 o © ~ © S < < S < .

: d o © ~ o~ = © © ° N

m [sa) © © © 0 =4 ©

o o o m o

° s N & Parallel: 606x
2 .

Speedup

Theoretical Speedup comparison with BarrierPoint
SPEC CPU2017 with ref inputs, 8 threads, passive wait-policy

LoopPoint
B Serial
m Parallel

BarrierPoint
- Serial
B Parallel

Speedup

621.wrf s.1

644.nab_s.1

654.roms_s.1
657.xz_s.1
657.xz_s.2

—
2
o~
o
o
Qo
o
o
o

603.bwaves_s.1
603.bwaves_s.2
607.cactuBSSN_s.1
619.lbm_s.1
627.cam4 s.1
638.imagick_s.1
649.fotonik3d_s.1

BNUS

National University
of Singapore

Speedup

Theoretical Speedup comparison with BarrierPoint
SPEC CPU2017 with ref inputs, 8 threads, passive wait-policy

LoopPoint
B Serial
m Parallel

104

BarrierPoint
- Serial
B Parallel

103

102

Speedup

Serial: 244x

Up to 31000X Parallel: 11587x

s p e e d u p ! = ™ 3 = = ~ by = = by 3 ~ N
9] wn wn wn (9] (9] wn wn (9] wn wn wn wn
o o I | | | I o | I o o o
4] o z 1S t 3 S [®] g 3 € i i
> > a E=] 3 € o =) c ~ s ~ ~
& & @ s 2 S =3 @ < s = 0 0
2) 2 9 © ~ Q S o 2 o © ©
0 0 2 > © 5 o ©
© o © =
o o o 3] o))
© © ~ © <
o ©
©

Summary

e Contributions
= Methodology to sample generic multi-threaded workloads
= Uses application loops (barring spinloops) as the unit of work
= Flexible to be used for checkpoint-based simulation
e Accurate results in minimal time
= Average absolute error of 2.3% across applications
= Parallel speedup going up to 31,000 X
= Reduces simulation time from a few years to a few hours

More Information

* Links
= Artifact: https://github.com/nus—comparch/looppoint
= Page: https://looppoint.github.io
= Short talk: https://youtu.be/Tr609MkT42g

= Questions: alens@comp.nus.edu.sq, tcarlson@comp.nus.edu.sq

We can share our SPEC binaries and LoopPoint specifications if you have the SPEC user license

https://github.com/nus-comparch/looppoint
https://looppoint.github.io/
https://youtu.be/Tr6O9MkT42g
mailto:alens@comp.nus.edu.sg
mailto:tcarlson@comp.nus.edu.sg

13.20 to 13.30
13.30 to 14.30
14.30 to 15.00
15.00 to 15.50

15.50 to 16.45
16.45 to 17.30

Alen Sabu
Harish Patil

Wim Heirman

Alen Sabu
Alen Sabu

Overview of the tutorial

Tools & Methodologies: Pin, PinPlay, SDE, ELFies

Simulation with Sniper / Sniper 8.0 GitHub release

Single-threaded and Multi-threaded Sampling, LoopPoint

Running LoopPoint Tools

LoopPoint and ELFies: Tools and Techniques to

Accelerate Simulations of Multi-threaded Applications
using Checkpointing

Alen Sabu!, Harish Patil?, Wim Heirman?, Trevor E. Carlson!

!National University of Singapore

2Intel Corporation

NUS

National University
of Singapore

intel

International Symposium on Computer Architecture, June 19th 2022, USA

BB &

Session 4

LoopPoint Demo

ALEN SABU, PHD CANDIDATE
NATIONAL UNIVERSITY OF SINGAPORE

159

Downloading Sniper 8.0

* Clone from https://github.com/snipersim/snipersim

« export CC=gcc-9; export CXX=g++-9

« make or make USE_PINPLAY=1

* Set SNIPER_ROOT to point to the Sniper base directory

e All set to use Sniper 8.0!

* Testing:
= make -C test/fft

https://github.com/snipersim/snipersim

Downloading LoopPoint

« Prerequisites
= x86-based Linux machine
= Require GCC 9
= Python
= Docker

Downloading LoopPoint

« Opensource code
= https://github.com/nus-comparch/looppoint.git
= Clone the repo

_/isca2022 $ git clone https://github.com/nus-comparch/looppoint.git
Cloning into 'looppoint'...
remote: Enumerating objects: 320, done.
remote: Counting objects: 100% (168/168), done.
remote: Compressing objects: 100% (141/141), done.
remote: Total 320 (delta 27), reused 148 (delta 21), pack-reused 152
Receiving objects: 100% (320/320), 15.74 MiB | 13.79 MiB/s, done.
Resolving deltas: 100% (56/56), done.
Checking connectivity... done.
/isca2022 $ 1s
looppoint

https://github.com/nus-comparch/looppoint.git

Building LoopPoint

« make build
= Build docker image

Created wheel for tabulate: filename=tabulate-0.8.9-py2-none-any.whl size=33171 sha256=c170d0c5148145e2deb57b20dbOb76d241909980d4dcea24
278faa8f3e0a3136
Stored in directory: /tmp/pip-ephem-wheel-cache-5zZe7v/wheels/0a/4b/e1/d0e504a346ed0882b93f971fe1122b9de64fabebd9b1d81b9f
Successfully built tabulate
Installing collected packages: tabulate
Successfully installed tabulate-0.8.9
Removing intermediate container f962cd7c7f48
---> fdccc13883e7
Step 11/11 : RUN pip3 install --no-cache-dir --upgrade pip && pip3 install --no-cache-dir numpy
---> Running in 89fala2a269a
Collecting pip
Downloading https://files.pythonhosted.org/packages/a4/6d/6463d49a933f547439d6b5b98b46af8742cc03ae83543e4d7688¢c2420f8b/pip-21.3.1-py3-n
one-any.whl (1.7MB)
Installing collected packages: pip
Found existing installation: pip 9.0.1
Not uninstalling pip at /usr/lib/python3/dist-packages, outside environment /usr
Successfully installed pip-21.3.1
WARNING: pip is being invoked by an old script wrapper. This will fail in a future version of pip.
Please see https://github.com/pypa/pip/issues/5599 for advice on fixing the underlying issue.
To avoid this problem you can invoke Python with '-m pip' instead of running pip directly.
Collecting numpy
Downloading numpy-1.19.5-cp36-cp36m-manylinux2010_x86_64.whl (14.8 MB)
Installing collected packages: numpy
WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is
recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv
Successfully installed numpy-1.19.5
Removing intermediate container 89fala2a269a
---> b006ee297a64
[Warning] One or more build-args [TZ_ARG] were not consumed
Successfully built bO06ee297a64
Successfully tagged ubuntu:18.04-looppoint

NUS

National University
of Singapore

Building LoopPoint

. Created wheel for tabulate: filename=tabulate-0.8.9-py2-none-any.whl size=33171 sha256=c170d0c5148145e2deb57b20dbOb76d241909980d4dcea24
° k b -l- d 278faa8f3e0a3136
MaKeE DUl

Stored in directory: /tmp/pip-ephem-wheel-cache-5zZe7v/wheels/0a/4b/e1/d0e504a346ed0882b93f971fe1122b9de64fabebd9b1d81b9f
Successfully built tabulate

. . Installing collected packages: tabulate
| | B u I | d d OC ke r I m age Successfully installed tabulate-0.8.9
Removing intermediate container f962cd7c7f48
---> fdccc13883e7
Step 11/11 : RUN pip3 install --no-cache-dir --upgrade pip &&
---> Running in 89fala2a269a
Collecting pip

pip3 install --no-cache-dir numpy

Downloading https://files.pythonhosted.org/packages/a4/6d/6463d49a933f547439d6b5b98b46af8742cc03ae83543e4d7688¢c2420f8b/pip-21.3.1-py3-n
one-any.whl (1.7MB)

Installing collected packages: pip

Successfully built bQ06ee297a64
Successfully tagged ubuntu:18.04-1looppoint

\ \ WARNING: Runnlng p1p as the 'root' user can result in broken permlssf&ns and conflicting behav1og[—wrfh the system package manager. It is
N \ recommended to use a virtual environment instead: https: //plp.pypa io/warnings/venv o
\\ \ Successfully installed numpy-1.19.5 e - -
\ \ Removing intermediate container 89fala2a269a e -
\ \ ---> b0O06ee297a64 Phe -
\ _[Warnlngl One_or more bu11d args [[TZ ﬁRE] _were, n’ot consumed - -
\\I Successfully bu11t b0065e297a64 1 - -
L R S el e

NUS

National University
of Singapore

Building LoopPoint

« make build
« make

= Run the docker image

_/isca2022/1ooppoint (main)$ make

docker run --rm -it -v "/ isc22022/1ooppoint : |/ isc22022/100ppoint"
--user 2014:100 -w "/ isca2022/1ooppoint" ubuntu:18.04-1looppoint

I have no name!@9b31dd16ef4e: ||/ isca2022/100ppoint$ 1s
Dockerfile-ubuntu-18.04 README.md 1lplib.py run-looppoint.py tools

Makefile apps preprocess suites.py

I have no name!@9b31dd16ef4e: | N/ isca2022/100ppoint$ I

Building LoopPoint

« make build
 make
 make apps
= Build the demo applications

= Source code of the apps
« apps/demo/matrix—omp

I have no name!@3b31dd16ef4e: |/ isca2022/1ooppoint$ make apps

make -C apps/demo/matrix-omp

make[1]: Entering directory '[N/ isca2022/1ooppoint/apps/demo/matrix-omp"
g++ -g -03 -fopenmp -o matrix-omp matrix-omp-init.cpp matrix-omp.cpp -static
/usr/lib/gcc/x86_64-1linux-gnu/9/libgomp.a(target.o): In function ‘gomp_target_init':
(.text+0x358): warning: Using 'dlopen' in statically linked applications requires at
runtime the shared libraries from the glibc version used for linking

1n -s matrix-omp base.exe

make[1]: Leaving directory '[N/ isca2022/1ooppoint/apps/demo/matrix-omp"
make -C apps/demo/dotproduct-omp

make[1]: Entering directory '_/iscaZOZZ/looppoint/apps/demo/dotproduct—omp'
g++ -g -03 -fopenmp -o dotproduct-omp dot_product_openmp.cpp

In -s dotproduct-omp base.exe

make[1]: Leaving directory ‘N isca2022/looppoint/apps/demo/dotproduct-omp’
I have no name!@9b31dd16ef4e: N/ isca2022/1looppoint$

« apps/demo/dotproduct—-omp

Building LoopPoint

Downloading Sniper from https://github.com/snipersim/snipersim
make -C tools/sniper
make[1]: Entering directory '_/iscaZOZZ/lcoppoint/tools/sniper'

e make build

o k Building for x86 (intel64)
ma e [DOWNLO] SDE 9.0.0
[DOWNLO] pinplay-scripts
[DOWNLO] Pin 3.18-98332
 make apps EooNL0] i1
[DOWNLO] xed
[INSTAL] xed
« make tools EPYTHON VERSION] 2.7.17
[GIT VERSION] v10.0-298-g2be2d28
[GCC VERSION] 9

= Build Sniper and LoopPoint tools :

I have no name!@f3f87f6¢10eb:_/isca2022/looppoint$ make tools

Downloading SDE kit make[4]: Entering directory '_/iscaZOZZ/looppoint/tools/sniper/sift/recorder‘
--2022-06-19 09:04:36-- https://downloadmirror.intel.com/684899/sde-external-9.0.0-2021-11-07-1in. tar.xz make[4]: Leaving directory :_/§SC82022/10<>DDO§nt/tools/sn@per/s§Ft/recorder:
Resolving downloadmirror.intel.com (downloadmirror.intel.com)... 13.33.88.124, 13.33.88.27, 13.33.88.68, ... make[3]: Leav%ng d%rectory _/%Sca2022/looppo%nt/tools/sn%per/s%ft/recorder

Connecting to downloadmirror.intel.com (downloadmirror.intel.com)|13.33.88.124|:443... connected. make[2]: Leaving directory '[N isca2022/looppoint/tools/sniper/sift

make[2]: Entering directory ‘| BB/ isca2022/1ooppoint/tools/sniper/standalone’
[DEP] standalone/standalone.d
[DEP] standalone/exceptions.d
[CXX] standalone/exceptions.o
] .0
]

HTTP request sent, awaiting response... 200 OK
Length: 26240092 (25M) [binary/octet-stream]
Saving to: 'STDOUT'

= 100%[>] 25.02M 10.8MB/s

in 2.3s [CXX standalone/standalone
[LD lib/sniper

2022-06-19 09:04:38 (10.8 MB/s) - written to stdout [26240092/26240092]

Intel SDE))
Sniper build completed

NUS

National University
of Singapore

Building LoopPoint

Opensource code
= https://github.com/nus-comparch/looppoint.git
= Clone the repo
LoopPoint script
= make build
 Build docker image
= make
« Run docker image
= make apps
 Build the demo applications
= make tools
« Build Sniper and LoopPoint tools

https://github.com/nus-comparch/looppoint.git

Running LoopPoint

* Use LoopPoint driver script
= ,/run-looppoint.py —h
= Provides the information on how to run the tool

I have no name!@1fbfad8b73ce: MM/ isca2022/1ooppoint$./run-looppoint.py -h
Benchmarks:
demo:
dotproduct matrix

The tool helps reproduce some of the major results showed in LoopPoint paper.
Usage:

run-looppoint.py

[-h | --help]: Help

[-n | --ncores=<num of threads> (8)]

[-i | --input-class=<input class> (test)]

[-w | --wait-policy=<omp wait policy> (passive)]

[-p | --program=<suite-application-input> (demo-dotproduct-1)]: Ex. demo-matrix-1,cpu2017-bwaves-1

[--force]: Start a new set of end-to-end run

[--reuse-profile]: Reuse the profiling data (used along with --force)
[--reuse-fullsim]: Reuse the full program simulation (used along with --force)
[--no-flowcontrol]: Disable thread flowcontrol during profiling
[--use-pinplay]: Use PinPlay instead of SDE for profiling

[--native]: Run the application natively

[/ National University
of Singapore

Running LoopPoint

e Example run command
= ,/run-looppoint.py —-p demo—-dotproduct-1 -n 8 ——force

I have no name!@1fbfadsb73ce: | I/ isca2022/1ooppoint$./run-looppoint.py -p demo-dotproduct-1 -n 8 --force
[LOOPPOINT] Generating fat pinball.

[PREPROCESS] dotproduct-omp

[PREPROCESS] apps/demo/dotproduct-omp/dotproduct-omp

[PREPROCESS] _/isca2022/1ooppoint/apps/demo/dotproduct—omp/dotproduct—omp

[PREPROCESS] symlinking dotproduct-omp /tmp/tmpcdMI_d/base.exe

[PREPROCESS] apps/demo/dotproduct-omp/test

[PREPROCESS] _/isca2022/looppoint/apps/demo/dotproduct—omp/test

[PREPROCESS] symlinking _/isca2022/1ooppoint/apps/demo/dotproduct—omp/test/dotproduct—omp.1.cfg /tmp/tmp
cdMI_d/dotproduct-omp.1.cfg

[PREPROCESS] Done

x% TRACING: START #xx June 19, 2022 10:03:27

Script version $Revision:1.128$

Script: sde_pinpoints.py

Script args: --delete --mode mt ——sdehome=_/isca2022/looppoint/tools/sde—external—g.0.0—20
21-11-07-1in --cfg |/ isca2022/1ooppoint/apps/demo/dotproduct-omp/test/dotproduct-omp.1.cfg --log_options
-start_address main -log:fat -log:mp_atomic O -log:mp_mode O -log:strace -log:basename _/isca2022/loop
point/results/demo-dotproduct-1-test-passive-8-20220619100327/whole_program.1/dotproduct.1 --replay_options=-repl
ay:strace -1

NUS

ational University
of Singapore

Running LoopPoint

* The LoopPoint driver script
= Profiling the application

Running LoopPoint

* The LoopPoint driver script

= Profiling the application
« make_mt_pinball : Generate whole-program pinball
« gen_dcfg : Generate DCFG file to identify loop information
« gen_bbv : Generate feature vector of each region
« gen_cluster : Cluster regions

Fat Pinball

 Makes Pin-based analyses repeatable.

e Command:

= $SDE_KIT/pinplay-scripts/sde_pinpoints.py ——mode mt —
cfg=$CFGFILE --log_options="-start_address main -log:fat
—log:basename $WPP_BASE” —-replay_options="-replay:strace" -1

* Generates a whole-program pinball for further profiling steps

DCFG Generation

* A dynamic control-flow graph (DCFG) is a specialized control-flow
graph that adds data from a specific execution of a program

e C++ DCFG APIs available for accessing the data
= DCFG_LOOP_CONTAINER: :get_loop_ids
* Get the set of loop IDs
= DCFG_LOOP
« get_routine_id : get the function that the loop belongs to
« get_parent_loop_id : get the parent loop

DCFG Generation

* A dynamic control-flow graph (DCFG) is a specialized control-flow
graph that adds data from a specific execution of a program

e C++ DCFG APIs available for accessing the data.

e More APIs can be found in
= tools/sde-external-9.0.0-2021-11-07-1in/pinkit/sde-example/include
 dcfg_api.H
« dcfg_pin_api.H
e dcfg_trace_api.H

DCFG Generation

e Collect Loop Information

e Command:

$SDE_BUILD_KIT/pinplay-scripts/replay.py ——pintool=sde—-global-
looppoint.so ——pintool_options “-dcfg -replay:deadlock_timeout
O -replay:strace —-dcfg:out_base_name $DCFG_BASE $WPP_BASE”

-dcfg : enable DCFG generation
DCFG_BASE : the basename of DCFG that is generated

BBV Generation

Profiling the feature vector of each region

e Command:

» $SDE_BUILD_KIT/pinplay-scripts/sde_pinpoints.py ——pintool="sde-global-1looppoint.so"
——global_regions —-pccount_regions —-cfg $CFG ——whole_pgm_dir $WPP_DIR —-mode mt -S
$SLICESIZE -b -—-replay_options "-replay:deadlock_timeout @ -global_profile -
emit_vectors 0 -filter_exclude_lib 1libgomp.so.1l -filter_exclude_lib libiomp5.so -
looppoint:global_profile —-looppoint:dcfg-file $DCFG -looppoint:main_image_only 1 -
looppoint: loop_info $PROGRAM. $INPUT. loop_info.txt —flowcontrol:verbose 1 -
flowcontrol:quantum 1000000 —flowcontrol:maxthreads $NCORES”

= —pccount_regions : (PC, count)-based region information
= -S $SLICESIZE: The global instruction count for each region
= —filter_exclude_lib: Exclude libraries from profiling information

BBV Generation

Profiling the feature vector of each region

e Command:

$SDE_BUILD_KIT/pinplay-scripts/sde_pinpoints.py ——pintool="sde-global-looppoint.so"
—-—global_regions ——pccount_regions —-cfg $CFG ——whole_pgm_dir $WPP_DIR —--mode mt -S
$SLICESIZE -b -—-replay_options "-replay:deadlock_timeout @ -global_profile -
emit_vectors 0 -filter_exclude_lib 1libgomp.so.1l -filter_exclude_lib libiomp5.so -
looppoint:global_profile —-looppoint:dcfg-file $DCFG -looppoint:main_image_only 1 -
looppoint: loop_info $PROGRAM. $INPUT. loop_info.txt —flowcontrol:verbose 1 -
flowcontrol:quantum 1000000 —flowcontrol:maxthreads $NCORES”

—looppoint:main_image_only: Select only main image for choosing markers
—looppoint: loop_info : Utilize loop information as the marker of each region
—flowcontrol:quantum : synchronize each thread every 1000000 instructions

Clustering

e Cluster all regions into several groups.
= SimPoint [1]
= Utilize feature vectors of all threads
= kmeans algorithm

@ [1] Sherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS 02

Clustering

e Cluster all regions into several groups.

e Command

$SDE_BUILD_KIT/pinplay-scripts/sde_pinpoints.py ——pintool="sde-
global-looppoint.so" --cfg $CFG --whole_pgm_dir $WPP_DIR -S
$SLICESIZE —--warmup_factor=2 -—-maxk=$MAXK —-—-append_status -s —-
simpoint_options="-dim $DIM -coveragePct 1.0 —-maxK $MAXK”

DIM: The reduced dimension of the vector that BBVs are projected to
MAXK : Maximum number of clusters for kmeans

Running LoopPoint

* The LoopPoint driver script

= Profiling Results:
« dotproduct.1_52.global.pinpoints.csv
« (start-pc, start-pc-count), (end-pc, end-pc-count)

comment, thread-id,region-id,start-pc, start-image-name, start-image-offset, start-pc-count,end-pc, end-image-name, end-image-offset, end-pc-count,end-pc-relative-
count, region-length, region-weight, region-multiplier, region-type

RegionId = 1 Slice = 1 Icount = 80000008 Length = 80000066 Weight = 0.10000 Multiplier = 1.000 ClusterSlicecount = 1 ClusterIcount = 80000066

#Start: pc : 0x555555554e80 image: dotproduct-omp offset: Oxe80 absolute_count: 1588076 source-info: Unknown:0

#End: pc : 0x5555555553cO image: dotproduct-omp offset: Ox13cO absolute_count: 3383564 relative_count: 243103.0 source-info: Unknown:0Q

cluster O from slice 1,global,1,0x555555554€80,dotproduct-omp,0xe80, 1588076 ,0x5555555553¢c0, dotproduct-omp,0x13c0, 3383564,243103,80000066,0. 10000, 1.000,simulation

[/ National University
of Singapore

Running LoopPoint

The LoopPoint driver script
= Profiling Results:

« dotproduct.1_52.global.pinpoints.csv
. (start -pc, start-pc-count),

(end-pc, end-pc-count)

\
\ \

\ \

\ \ 4
\ \

\ \

\ \

\ \

\ \

\ \

\ \

\ \

\ \

\ \

\ \

\

i
4
\
#Start: pc

7
7
II 4
comment, thread-id,region-id,start- Qc start-image-name, start-imageYoffset, start-pc- couyf end-pc, end-image-name, end- 1mage -offset, end-pc-count,end-pc-relative-
count, region-length, region-weight, {eglon multiplier, region-type \
1
#End: pc :

l
4
0x5555555553¢c0 image

I
’ 4
I, /
RegionId = 1 Slice = 1 Icount = 8000‘0008 Length = 80000066 Weight = §.10000 Multlpllﬂr = 1.000 ClusterSlicecount = 1 LlusterIcount = 80000066
0x555555554e80 image: dotbroduct-omp offset: 0xe80 absoluﬁe count: 15889?6 source-info: Unknown:0
r.dniprjhuc

toamp offset: 0x13cO abso%u
cluster © from slice 1,global, 1|0x555555554e8@ dotproduct-omp,0xe80,i158807

uil.t..

y =
I
Jﬁm_;datlve count: 243103. O,.snu.k& nfo: Unknown:0
S |

6'0x5555555553c0 dotproduct omp, 0x13c0] 3383564243103, 80000066, 0. 10000, 1.000, simulation

:
[/ National University
of Singapore

Running LoopPoint

* The LoopPoint driver script

= Profiling Results:
« dotproduct.1_52.global.pinpoints.csv
- (start-pc, start-pc-count), (end-pc, end-pc-count)
« Cluster group id

comment, thread-id,region-id,start-pc, start-image-name, start-image-offset, start-pc-count,end-pc, end-image-name, end-image-offset, end-pc-count,end-pc-relative-
count, region-length, region-weight, region-multiplier, region-type

RegionId = 1 Slice = 1 Icount = 80000008 Length = 80000066 Weight = 0.10000 Multiplier = 1.000 ClusterSlicecount = 1 ClusterIcount = 80000066

#Start: pc : 0x555555554e80 image: dotproduct-omp offset: Oxe80 absolute_count: 1588076 source-info: Unknown:0

#End: PF= 0x5555555553c0 image: dotproduct-omp offset: Ox13cO absolute_count: 3383564 relative_count: 243103.0 source-info: Unknown:0

clusten O:from slice 1,global,1,0x555555554e80,dotproduct-omp,Oxe80, 1588076,0x5555555553¢c0, dotproduct-omp,0x13c0, 3383564,243103, 80000066,0. 10000, 1.000,simulation

| J_—

National University
of Singapore

Running LoopPoint

* The LoopPoint driver script

= Profiling Results:
« dotproduct.1_52.global.pinpoints.csv
- (start-pc, start-pc-count), (end-pc, end-pc-count)
« Cluster group id
« Cluster multiplier

comment, thread-id,region-id,start-pc, start-image-name, start-image-offset, start-pc-count,end-pc, end-image-name, end-image-offset, end-pc-count,end-pc-relative-
count, region-length, region-weight, region-multiplier, region-type

RegionId = 1 Slice = 1 Icount = 80000008 Length = 80000066 Weight = 0.10000 Multiplier = 1.000 ClusterSlicecount = 1 ClusterIcount = 80000066

#Start: pc : 0x555555554e80 image: dotproduct-omp offset: Oxe80 absolute_count: 1588076 source-info: Unknown:0

#End: pc : 0x5555555553cO image: dotproduct-omp offset: Ox13cO absolute_count: 3383564 relative_count: 243103.0 source-info: Unknown:0Q ==

cluster 0 from slice 1,global,1,0x555555554e80,dotproduct—omp,Oxe80,1588076,0x5555555553c0,dotproduct—omp,0x13c0,3383564,243103,80000066,0.100001}.OOO}Simulation

National University
of Singapore

Running LoopPoint

* The LoopPoint driver script

= Profiling the application
« dotproduct.1_52.global.pinpoints.csv

* Sampled Simulation : (start-pc, start-pc-count), (end-pc,
end-pc—-count), cluster group id

e Extrapolation: cluster group id, cluster—-multiplier

Running LoopPoint

* The LoopPoint driver script
= Profiling the application
= Sampled simulation of selected regions

Simulation using Sniper

* LoopPoint support in Sniper 8.0 (using Intel SDE)

 Handle the beginning and ending of representative regions
e Using PC-based markers

= Sniper shifts simulation modes based on signals from Pin/SDE

Simulation using Sniper

LoopPoint support in Sniper 8.0 (using Intel SDE)

Handle the beginning and ending of representative regions
./run-sniper -n 8 —gscheduler/type=static -cgainestown -

ssimuserroi --roi-script -—-—trace—-args=-control
start:address:<PC>:count<Count>:global —-trace-args=-control
stop:address:<PC>:count<Count>:global —— <app cmd>

Region start: —control start:address:<PC>:count<Count>

Region end: -control end:address:<PC>:count<Count>

PC, Count :LoopPoint region boundaries
Note: Use -pinplay:control if Pin/Pinplay is used instead of SDE

188

Simulation using Sniper

./run-sniper -n 8 -v -sprogresstrace: 10000000 -gtraceinput/timeout=2000 -gscheduler/type=static -
cgainestown --trace-args=-sniper:flow 1000 -ssimuserroi --roi-script --trace-args=-control start:address:
0x5555555553¢c0: count8095299:global --trace-args=-control stop:address:0x5555555553c0:count16984191:global -
gperf_model/fast_forward/oneipc/interval=100 -ggeneral/inst_mode_init=detailed -gperf_model/fast_forward/oneipc/
include_memory_latency=true —- ,/base.exe

TANUS

National University
of Singapore

Simulation using Sniper

Start PC and count

./run-sniper -n 8 -v -sprogresstrace: 10000000 -gtraceinput/timeout=2000 -gscheduler/type=static -
cgainestown/--trace-args=-sniper:flow 1000 -ssimuserroi --roi-script --trace-args=-control start:address:
0x5555555553¢c0: count8095299:global --trace-args=-control stop:address:0x5555555553c0:count16984191:global -
gperf_model/fast_forward/oneipc/interval=100 -ggeneral/inst_mode_init=detail&d -gperf_model/fast_forward/oneipc/
include_memory_latency=true —- ,/base.exe

Application End PC and count

Simulation using Sniper

[PROGRESS] 700M instructions, 3198 KIPS, 2.37 IPC
[PROGRESS] 710M instructions, 6004 KIPS, 8.00 IPC
[PROGRESS] 720M instructions, 5526 KIPS, 8.00 IPC
[CONTROLLER] tid: 5 ip: 0Ox00005555555553e2 658579928 Start
[SNIPER] Enabling performance models
[PROGRESS] 730M instructions, 608 KIPS, 1.97 IPC

[PROGRESS] 740M instructions, 469 KIPS, 1.61 IPC

[PROGRESS] 750M instructions, 455 KIPS, 1.61 IPC

[PROGRESS] 760M instructions, 447 KIPS, 1.61 IPC

[PROGRESS] 770M instructions, 447 KIPS, 1.61 IPC

[PROGRESS] 780M instructions, 446 KIPS, 1.61 IPC

[PROGRESS] 790M instructions, 446 KIPS, 1.61 IPC

[PROGRESS] 800M instructions, 448 KIPS, 1.61 IPC

[CONTROLLER] tid: 4 ip: 0x00005555555553e2 669005339 Stop

[SNIPER] Disabling performance models

[SNIPER] Leaving ROI after 176.54 seconds

[SNIPER] Simulated 80.0M instructions, 708.4M cycles, 0.11 IPC

[SNIPER] Simulation speed 453.2 KIPS (56.6 KIPS / target core - 17654.0ns/instr)
[SNIPER] Sampling: executed 7.03% of simulated time in detailed mode

[SNIPER] Setting instrumentation mode to FAST_FORWARD

[PROGRESS] 810M instructions, 1918 KIPS, 4.23 IPC

Simulation using Sniper

[PROGRESS] 700M instructions, 3198 KIPS, 2.37 IPC
[PROGRESS] 710M instructions, 6004 KIPS, 8.00 IPC
[PROGRESS] 720M instructions, 5526 KIPS, 8.00 IPC
[CONTROLLER] tid: 5 ip: Ox00005555555553e2 658579928 Start
[SNIPER] Enabling performance models
[PROGRESS] 730M instructions, 608 KIPS, 1
[PROGRESS] 740M instructions, 469 KIPS, 1.61 IPC

[PROGRESS] 750M instructions, 455 KIPS, 1.61 IPC Detailed simulation
[PROGRESS] 760M instructions, 447 KIPS, 1.61 IPC >
1
1
1

~

.97 IPC

[PROGRESS] 770M instructions, 447 KIPS, 1.61 IPC
[PROGRESS] 780M instructions, 446 KIPS, 1.61 IPC
[PROGRESS] 790M instructions, 446 KIPS, 1.61 IPC
[PROGRESS] 800M instructions, 448 KIPS, 1.61 IPC
[CONTROLLER] tid: 4 ip: O0x00005555555553e2 669005339 Stop
[SNIPER] Disabling performance models

[SNIPER] Leaving ROI after 176.54 seconds

[SNIPER] Simulated 80.0M instructions, 708.4M cycles, 0.11 IPC

[SNIPER] Simulation speed 453.2 KIPS (56.6 KIPS / target core - 17654.0ns/instr)
[SNIPER] Sampling: executed 7.03% of simulated time in detailed mode

[SNIPER] Setting instrumentation mode to FAST_FORWARD

[PROGRESS] 810M instructions, 1918 KIPS, 4.23 IPC

-

Running LoopPoint

 The LoopPoint driver script
= Profiling the application
= Sampled simulation of selected regions
= Extrapolation of performance results

Extrapolation of Performance Result

Scaling factor : multiplier

for regionid, multiplier in region mult.iteritems{(}):
region_runtime = 0

continue

"runtime') |
print('[LOOPPOINT] Warning: Skipping r%s as the simulation results are not available'’
I_cqy_mult_t:.multip_lien

% regionid)
I_extrapolated_runtime += region_runtime * multiplier
iT Tegion_runtime > max_ rep_runtime:
max_rep_runtime =

region_runtime
sum_rep_runtime += region_runtime

Runtime of corresponding representative region : region_

National University
of Singapore

runtime

Running LoopPoint

* The LoopPoint driver script
= Profiling the application
= Sampled simulation of selected regions

= Extrapolation of performance results
* Predicted runtime using sampled simulation

o Fomm e o Fmmm———— Fmm e Fmm o +
| application | runtime | runtime | error | speedup | speedup | coverage |
| | actual (ns) | predicted (ns) | (%) | (parallel) | (serial) | (%) |
o Fom e e e e e = I Fom Fom e Fom +
| dotproduct-omp.1 | 592169300.0 |1 414953200.0 1| | 29.93 | 5.86 [1.68 | 100.0 |
o Fom e L Lt Fom————— Fom R Fomm +

Running LoopPoint

* The LoopPoint driver script

= Profiling the application
= Sampled simulation of selected regions

= Extrapolation of performance results
* Predicted runtime using sampled simulation
* The error rate of obtained using sampled simulation

| error | speedup | speedup | coverage |

(%) | (parallel) | (serial) | (%) |

+
| application | runtime | runtime
| actual (ns) | predicted (ns) |

+

Coming soon!

e Gemb5 support for LoopPoint region specification
* Release of 8-threaded SPEC CPU2017 representative pinballs
e Support for Open-source benchmarks (like NPB)

Thank you!

LoopPoint and ELFies: Tools and Techniques to

Accelerate Simulations of Multi-threaded Applications
using Checkpointing

Alen Sabu!, Harish Patil?, Wim Heirman?, Trevor E. Carlson!
!National University of Singapore
2Intel Corporation

NUS

National University
of Singapore

intel

International Symposium on Computer Architecture, June 19th 2022, USA

BB &

