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• Speaker: Akanksha Chaudhari
§ Research Assistant, National University of Singapore

• Topics Covered
§ Architectural exploration and evaluation
§ Simulation as a tool for performance estimation
§ Methods for fast estimation using simulation
§ State-of-the-art single-threaded sampled simulation techniques

Performance Analysis, Simulation, Sampling
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• Speaker: Harish Patil
§ Principal Engineer, Intel Corporation

• Topics Covered
§ Binary instrumentation using Pin or writing Pintools
§ PinPlay kit and PinPlay-enabled tools
§ SDE build kit for microarchitecture emulation
§ Checkpointing threaded applications using PinPlay, SDE
§ Detailed discussion on ELFies including its generation and usage

Using Tools: Pin, PinPlay, SDE, ELFies
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• Speaker: Alen Sabu
§ PhD Candidate, National University of Singapore

• Topics Covered
§ Sampled simulation of multi-threaded applications
§ Existing methodologies and their drawbacks
§ Detailed discussion on LoopPoint methodology
§ Experimental results of LoopPoint

Multi-threaded Sampling and LoopPoint
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• Speaker: Changxi Liu
§ PhD Candidate, National University of Singapore

• Topics Covered
§ Overview of Sniper simulator
§ High-level structure of LoopPoint code
§ Demo on how to use LoopPoint tools
§ Sampling custom workloads using LoopPoint

Sniper and LoopPoint Demo
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• Speaker: Zhantong Qiu
§ Undergraduate student, University of California, Davis

• Topics Covered
§ Overview of gem5 simulator
§ Structure of LoopPoint integration code
§ Demo on simulating LoopPoint regions on gem5
§ Running ELFies on gem5

Using LoopPoint with gem5
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Performance Analysis, Simulation, Sampling
Session 1

AKANKSHA CHAUDHARI, RESEARCH ASSISTANT
NATIONAL UNIVERSITY OF SINGAPORE
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Source: https://www.intel.com

Architectural Trends in Processor Design

11

Moore Law number of transistor per device: past, present, future [Intel]



Source: https://www.intel.com

Architectural Trends in Processor Design
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Moore Law number of transistor per device: past, present, future [Intel]

2x transistors 
every two 

years



Source: https://www.intel.com/

Architectural Trends in Processor Design
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Transistor innovations over time



Source: https://www.intel.com/

Architectural Trends in Processor Design

14

Transistor innovations over time

Higher performance

Reducing sizes



Exploration and Evaluation of New Ideas

15

Whoa! So many 
design choices… 
Which one do I 

pick?!

Idea #1

Idea #2

Well, just 
go with the 
BEST one.

Idea #3

Idea #73969218!

Idea #96736

Idea #96738

Architect #1 Architect #2

Cool.

The best Idea



Exploration and Evaluation of New Ideas
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The Architect IRL

The Important Question:

So how do we then explore new ideas quickly and evaluate 
them accurately to find the BEST idea?

zzz…



• A “good” idea optimizes a finite set of performance metrics:

Exploration and Evaluation of New Ideas

17

M = {𝑚!, 𝑚", … , 𝑚#, … , 𝑚$}

Computational 
Speed Energy 

Efficiency
Memory 

Utilization

Good idea



• A “good” idea optimizes a finite set of performance metrics:

Exploration and Evaluation of New Ideas
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M = {𝑚!, 𝑚", … , 𝑚#, … , 𝑚$}Good idea

How to assess whether a given idea 
improves the target metrics?



Different evaluation methods:

• Theoretical proof 
• Analytical modeling

• Simulation
• Prototyping

• Actual implementation

Exploration and Evaluation of New Ideas
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Different evaluation methods:
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An “Evaluation” of the Evaluation Methods
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Fairly complex for 
modern architectures
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Evaluating 
different workload 
profiles is difficult
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Evaluating 
different workload 
profiles is difficult

Worst-case 
estimates can be 

misleading
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Expensive!
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(Relatively) less expensive



Different evaluation methods:

• Theoretical proof

• Analytical modelling

• Simulation 
• Prototyping

• Actual implementation

An “Evaluation” of the Evaluation Methods
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(Relatively) less expensive

BUT limited by the 
capability of its 

components



Different evaluation methods:

• Theoretical proof

• Analytical modelling

• Simulation 
• Prototyping

• Actual implementation

An “Evaluation” of the Evaluation Methods
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Not feasible for 
exploration of large 

design spaces!



Different evaluation methods:

• Theoretical proof

• Analytical modelling

• Simulation 
• Prototyping

• Actual implementation

An “Evaluation” of the Evaluation Methods

35



Different evaluation methods:
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• Analytical modelling

• Simulation 
• Prototyping

• Actual implementation

An “Evaluation” of the Evaluation Methods

36

Allows for varying 
degrees of abstractions 

and accuracy



Different evaluation methods:

• Theoretical proof

• Analytical modelling

• Simulation 
• Prototyping

• Actual implementation

An “Evaluation” of the Evaluation Methods

37

Feasible exploration of 
large design spaces



Different evaluation methods:

• Theoretical proof

• Analytical modelling

• Simulation 
• Prototyping

• Actual implementation

An “Evaluation” of the Evaluation Methods

38

Most feasible way to explore and 
evaluate a large and complex design 

space in terms of time, cost and 
efficiency!



• How does simulation work?

§ Mimics the key functional and/or timing behavior of a system to reflect its 
performance in terms of the target metrics.

Simulation: An Overview
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• How does simulation work?

§ Mimics the key functional and/or timing behavior of a system to reflect its 
performance in terms of the target metrics.

• How does this help us?
§ Enables fast exploration of design space (to discover the next big idea!).
§ Allows verification, debugging, and optimization of existing systems.
§ Also enables evaluation and understanding of non-existent systems.

• Caution: A simulator is only as good as the person who uses it.

Simulation: An Overview
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• An ideal simulation technique:

§ High speed à For faster exploration.
§ High flexibility à For wider exploration.
§ High accuracy/low simulation error à For accurate evaluation.

• Practical simulation techniques involve trade-offs:
§ Speed vs. accuracy
§ Accuracy vs. flexibility
§ Flexibility vs. speed

Simulation: An Overview
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Different Simulation Techniques

44

SIMULATORS

Timing SimulatorsFunctional Simulators
(Based on level of detail)



Different Simulation Techniques
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SIMULATORS

Timing SimulatorsFunctional Simulators
(Based on level of detail)

• Implement only architectural details and 
achieve same functionality as the modeled 
architecture.

• Tracks architectural stats (memory access 
locality, instruction count/mix).

• Faster, but cannot track detailed 
microarchitectural parameters.



Different Simulation Techniques
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SIMULATORS

Timing SimulatorsFunctional Simulators
(Based on level of detail)

• Implement the microarchitecture.

• Produces detailed microarchitectural stats 
(IPC, runtime, memory performance).

• Do not have to emulate the functionality of 
the modeled architecture.



Different Simulation Techniques
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SIMULATORS

Timing SimulatorsFunctional Simulators
(Based on level of detail)

Integrated Functional and 
Timing Simulators

More flexible and accurate!



Different Simulation Techniques
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SIMULATORS

Timing SimulatorsFunctional Simulators
(Based on level of detail)

Integrated Functional and 
Timing Simulators

More flexible and accurate!

What about 
speed?



• Partial simulation and extrapolation

§ Simulating the first 1 billion instructions in detail.

Techniques to Simulate Faster

49

Detailed simulation



• Partial simulation and extrapolation

§ Simulating the first 1 billion instructions in detail.

§ Fast-forwarding to skip the initialization phase and then simulating in detail.

Techniques to Simulate Faster
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Fast-forwarding using 
Functional simulation

Detailed simulation



• Partial simulation and extrapolation

§ Simulating the first 1 billion instructions in detail.
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§ Fast-forwarding, warming up μ-architectural state, and then simulating in detail.

Techniques to Simulate Faster
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Fast-forwarding using 
Functional simulation

Detailed simulation

Warming up the 
microarchitectural state
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Fast-forwarding using 
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• Partial simulation and extrapolation

§ Simulating the first 1 billion instructions in detail.
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§ Fast-forwarding, warming up μ-architectural state, and then simulating in detail.

• Workload reduction: simulating for reduced input sets or loop counts.
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Fast-forwarding using 
Functional simulation

Detailed simulation

Warming up the 
microarchitectural state



• Problems with these techniques:
§ Partial simulation and extrapolation

• Fails to capture global variations in program behavior and performance.

§ Workload reduction
• Benchmark behavior may vary significantly across different input sizes. 
• Simulation with reduced input sets or loop counts does not reflect the actual performance. 

Source: Sherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS’02

Techniques to Simulate Faster
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• Sampling enables the simulation of selective representative regions.
§ Subset of regions within a program execution that represent the behavior of the entire 

application when extrapolated.

• Selecting representative regions
§ Targeted sampling (like in SimPoint)

§ Statistical sampling (like in SMARTS)

Sampled Simulation to the Rescue!

55

(Full) program execution

Representative regions



• Large-scale program behaviors vary significantly over their run times.

• Main goal: To automatically and efficiently analyze program behavior over the 
different phases of execution.

• SimPoint uses Basic Block Vectors (BBV) as a hardware-independent metric for 
characterizing the program behavior in different phases.

Source: Sherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS’02

Sampled Simulation Techniques: SimPoint

56

…..
__

L1 data cache miss rate

Instructions Per Cycle



Basic Block Vector (BBV) is a single-dimensional array that maintains a count of how 
many times each basic block was executed in each interval

Sampled Simulation Techniques: SimPoint

57

BB0
BB1

BB2
BB4 BB5BB3

1 1 0 1 55

BB6

1

5 iterations

0 1 432 5 6

LOOP!

BRANCH

Program execution:

Indexed by Basic Block IDs

Maintains the execution count for 
each Basic Block

BB0

Basic Block Vector:



• Basic Block Similarity: Measured using Euclidean or Manhattan Distances.

• Depicted by Basic Block Similarity Matrices.

Source: Sherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS’02

Sampled Simulation Techniques: SimPoint

58

Using Manhattan distances Using Euclidian distances

• Diagonal of the matrix à
program execution

• Point (x, y) gives similarity index
• ↑ darkness  à ↑ similarity



• The BBVs obtained from the profiling step have a very large number of dimensions! 

• “Curse of dimensionality”:

§ Hard to cluster the data.
§ Clustering time increases significantly.

Source: Sherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS’02

Sampled Simulation Techniques: SimPoint
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Solution: Reduce number of dimensions 
using Random Linear Projections



K-means clustering: 

Sampled Simulation Techniques: SimPoint

60

• Representative region à single simulation 
point
§ BBV with the lowest distance from the centroid of all 

cluster centers.

• Representative regions à multiple simulation 
points
§ For each cluster, choose the BBV that is closest to the 

centroid of the cluster.



Source: Sherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS’02

Sampled Simulation Techniques: SimPoint

61



• Main idea behind SMARTS:

§ Using systematic statistical sampling:
• To identify a minimal representative sample from the population for simulation.
• To establish a confidence level for the error on sample estimates.

§ Simulating using two modes :
• Detailed simulation of sampled instructions.
• Functional simulation of remaining instructions.

Sampled Simulation Techniques: SMARTS
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• SMARTS uses Systematic Sampling:

Sampled Simulation Techniques: SMARTS

63

Sample at a fixed interval 
of length k units or k x U 

instructions, where 
k = N / n

Start sampling
at offset j

Each unit 
consists of U
instructions

Total sample size:
n = N/k units

OR
n x U instructions  



• Simulation:

Sampled Simulation Techniques: SMARTS

64

U instructions are measured as a
sampling unit using detailed 

simulation

W instructions of detailed
simulation warm state before

each sampling unit

U(k -1) – W instructions are 
functionally simulated and large

structures may be warmed

Values of U and W 
depend on workload 

characteristics



• Evaluation results:

§ Average error: 
• 0.64% for CPI
• 0.59% for EPI

§ Speedup over full-stream simulation: 
• 35x for 8-way out-of-order processors
• 60x for 16-way out-of-order processors

Sampled Simulation Techniques: SMARTS

65

By simulating fewer than 50 million 
instructions in detail per benchmark.
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Using Tools: Pin, PinPlay, SDE, ELFies
Session 2

HARISH PATIL, PRINCIPAL ENGINEER (DEVELOPMENT TOOLS SOFTWARE)
INTEL CORPORATION
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http://pintool.intel.com

Pin: A Tool for Writing Program Analysis Tools

69

$ pin –t pintool –– test-program Normal output + 
Analysis output

counter++; print(IP)
sub $0xff, %edx
counter++; print(EA)
movl 0x8(%ebp), %eax
counter++;print(br_taken) 
jle <L1>

sub $0xff, %edx
movl 0x8(%ebp), %eax
jle <L1>

Pin
Test-program

Pintool

Extra code

Run-time 
Translator

Operating System

Hardware

http://pintool.intel.com/


http://pinplay.org

PinPlay: Software-based User-level Capture and 
Replay

70

No binaries/inputs
No application 
setup
No license 
checking

Input 

Program/
Libraries

License

Platforms : Linux, Windows, MacOS 

Upside : It works! Large OpenMP / MPI programs, Oracle

Downside : High run-time overhead: ~100-200X for capture è
Cannot be turned on all the time

Logger pinball
Replayer

+
Pintool

http://pinplay.org/


Pinball (single-threaded): 
Initial memory/register + injections
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Replayer + Simulator

Internal states initialized

Arch. state

Initial 
memory 
image

foo.reg

foo.text

Sy
sc

al
l

A

Replay 50
instructions

RD
TS

C

Si
gn

al
 

100 250

Inject events: based on instruction counts
foo.sel / foo.reg 
(injections)

•System calls : skipped by injecting next rip/ memory changed
• CPUID, RDTSC : affected registers injected
• Signals/Callbacks : New register state injected



Pinball (multi-threaded): 
Pinball (single-threaded) + Thread-dependencies

72

foo.reg (per-thread)
Initial registers: 
T0

Initial registers: 
T1

Initial registers: 
T(n-1)

Application Memory (common)
foo.text

Event injection works only if same behavior 
(same instruction counts) is guaranteed  

during replay
foo.reg (per-thread)

foo.sel (per-thread)

foo.race (per-thread)

[T1] 2 T2 2
[T1] 3 T2 3

[T2] 5 T4 1

Thread T1 cannot execute instruction 2
until T2 executes instruction 2

Thread T2 cannot execute instruction 
5 until T4 executes instruction 1

MT Pinball ==  race-files provide determinism
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ELFie : An Executable Application Checkpoint

• Checkpoint: Memory + Registers
• Application : Only program state captured  -- no 

OS or simulator states
• Executable :  In the Executable Linkage Format 

commonly used on Linux

Startup-
code

Application 
Memory

Arch. State 
(per thread)

User-specified 
code
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pinball2elf: Pinball converter to ELF

pinball2elf

User-specified 
callbacks : per 

process and per-
thread

Memory 
image 
(.text)

Injections 
(.sel)

Arch. 
State 
(.reg)

Thread 
order 
(.race)

Startup-
code

Application 
Memory
Arch. 

State (per 
thread)

User-specified 
code

http://pinelfie.org

http://pinelfie.org/


Getting started with pinball2elf

75

Prerequisite: ‘perf’ installed on your Linux box (perf stat /bin/ls should work)
• Clone pinball2elf repository: git clone https://github.com/intel/pinball2elf.git
• cd pinball2elf/src
• make all
• cd ../examples/ST
• ./testST.sh

Tested : Ubuntu 20.04.4 LTS : gcc/g++ 7.5.0 and 9.4.0
and Ubuntu 18.04.6 LTS: gcc/g++ 7.5.0

Running ../../scripts//pinball2elf.basic.sh pinball.st/log_0
..
Running ../../scripts//pinball2elf.perf.sh pinball.st/log_0 st
export ELFIE_PERFLIST=0:0,0:1,1:1

…
hw_cpu_cycles:47272 hw_instructions:4951 sw_task_clock:224943 



ELFie types: basic, sim, perf
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basic sim perf
How to create scripts/pinball2elf.ba

sic.sh pinball
scripts/pinball2elf.sim
.sh pinball

scripts/pinball2elf.perf.sh 
pinball perf.out

Exits gracefully? NO, either hangs or 
dumps core

NO, either hangs or 
dumps core
Simulator handles 
exit

YES, when retired instruction 
count reaches pinball icount

Environment 
variables used

NONE ELFIE_VERBOSE=0/1
ELFIE_COREBASE=X
Set affinity : thread 0 core 
X, thread 1 à core x+1

à

"ELFIE_WARMUP" to decide whether to 
use warmup
"ELFIE_PCCONT" to decide how to end 
warmup/simulation regions
ELFIE_PERFLIST, enables 
performance counting

Optional: Operating system state (SYSSTATE) per pinball: 
pintools/PinballSYSState [See CGO2021 ELFie paper]



Example: ELFIE_PERFLIST with a perf ELFie
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ELFIE_PERFLIST, enables performance counting
(  based on /usr/include/linux/perf_event.h

perftype: 0 --> HW 1 --> SW
HW counter: 0 --> PERF_COUNT_HW_CPU_CYCLES
HW counter: 1 --> PERF_COUNT_HW_CPU_INSTRUCTIONS
SW counter: 0 --> PERF_COUNT_SW_CPU_CLOCK
... <see perf_event.h:'enum perf_hw_ids' and 'enum

perf_sw_ids') 
% cd examples/MT
% ../../scripts/pinball2elf.perf.sh pinball.mt/log_0 perf.out
% setenv ELFIE_PERFLIST "0:0,0:1,1:1“
% pinball.mt/log_0.perf.elfie
├── perf.out.0.perf.txt
├── perf.out.1.perf.txt
├── perf.out.2.perf.txt

ROI start: TSC 48051110586217756
Thread start: TSC 48051110623843452
------------------------------------------------
Simulation end: TSC 48051110625045322

Sim-end-icount 3436
hw_cpu_cycles:36148 hw_instructions:3476 
sw_task_clock:141901 
------------------------------------------------
Thread end: TSC 48051110625366502
ROI end: TSC 48051110625959364
hw_cpu_cycles:40097 hw_instructions:4455 
sw_task_clock:188637 
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PinPoints == Pin + SimPoint

PinPoint 1: Weight 30% PinPoint 2: Weight 70%

Choose one simulation
point per phase…350 3518 …

1 2 1022 4232… …

Profile with a pin-based profiler Intervals :
30 million Instructions 

each

1 2 350 4232… … 3518
Find 
phases

Basic-block-vectors
Analyze with SimPoint

Program 
Execution

PinPoints



PinPoints : The repeatability challenge
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Test-program

Test-program

Problem: Two runs are not exactly same à PinPoints missed (PC marker based)

[ “PinPoints out of order” “PinPoint End seen before Start” ] 
Found this for 25/54 SPEC2006 runs!

Profiler + SimPoint

PinPoints

Simulate



PinPlay provides repeatability
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Test-program
PinPlay
Logger

Whole 
program 
pinball

Profiler + SimPoint

PinPoints

SimulateRegion
pinballs

PinPlay
Re-logger



1. University of California (San Diego), Intel Corporation, and Ghent 
University 
https://www.spec.org/cpu2006/research/simpoint.html

2. University of Texas at Austin 
https://www.spec.org/cpu2017/research/simpoint.html

3. Northwestern University
Public Release and Validation of SPEC CPU2017 PinPoints

Single-threaded PinPoints è SPEC2006/2017 
pinballs publicly available
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https://www.spec.org/cpu2006/research/simpoint.html
https://www.spec.org/cpu2017/research/simpoint.html
https://arxiv.org/pdf/2112.06981


• Runs across different configurations are non-deterministic [Alameldeen’03]
• Locks are acquired in different order
• Unprotected shared-memory accesses

• One can’t compare two runs/simulations of the same benchmark directly
®Change in micro-architecture present/simulated or execution path 

taken?

Simulation of multi-threaded Programs: The 
non-determinism challenge

82

1.Alameldeen’03 Variability in Architectural Simulations of Multi-threaded Workloads (HPCA2003)



1. Run multiple simulations for each studied configuration [Alameldeen’03]
• Needs random perturbation for each run 
• Average behavior per configuration
• Cost: multiple runs

• 2. Force deterministic behavior so that one run in each configuration is performed [Pereira’08 
@ Intel ]

• Same execution paths 
• Cost: loss in fidelity, thread behavior tied to tracing machine

• 3. Simulate the same “amount of work” [Alameldeen’06] : LoopPoint approach

Dealing with non-determinism
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A. Pereira’08: Reproducible Simulation of Multi-Threaded Workloads for Architecture Design Exploration, International 
Symposium on Workload Characterization (IISWC'08)

B. Alameldeen’06 IPC Considered Harmful for Multi-processors Workloads (IEEE-Micro-2006)



Why: Profiling should look only at ‘real work’
What: Skip profiling of synchronization code
How? 
• Automatically with Loop Analysis: Very hard

“Spin Detection Hardware for Improved Management of Multithreaded Systems” 
Transactions on Parallel and Distributed Systems, 2006
§ Look for loops that do not update architectural state
§ Was implemented in Sniper(Pin-2) but many OpenMP spin loops maintain stats hence 

do update architecture state
ü Heuristic

§ Filter synchronization library code: e.g. libiomp5.so, libpthread.so 

LoopPoint: Key idea 1: Filtering Synchronization 
Code during profiling

84



LoopPoint: Key idea 2: Loops as ‘Units of work’

85

Why: Property of program/binary : independent of architecture

1 2 102
2

… …

Profile with a SDE/DCFG-based profiler

Variable length intervals

Close to desired length : -sliceSize S 
Program 
Execution

Loop-entry KLoop-entry 1 Loop-entry N 

K N

Profiling

• Global counting of loop-entries
• Region start/stop : only in the main image

• Stop when ‘desired global instruction count’ (SliceSize) is reached
• Do not count instructions in synchronization library



DCFG Generation with PinPlay
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Dynamic Control-Flow Graph (DCFG)
Directed graph extracted for a specific execution: 
Nodes è basic blocks 
Edges ècontrol-flow : augmented with per-thread execution counts

Record: … dcfg-driver 
-dcfg

pinball

DCFG JSON file

Replay: w/custom 
PinPlay tool using DCFG 

API



PinPlay + DCFG : Stronger Repeatability
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Test-program
PinPlay

Logger + 
DCFG 

generation

Whole 
program 
pinball

LoopPoint Profiler +
SimPoint

PinPoints

DCFG JSON file

Invariant 
region 

markers

Computation loop 
entries
(NOT 

synchronization)



LoopPoint: Simulation alternatives

88

Sniper

Selective 
re-logging

Region 
pinball

PinPoints
file

Profile and find 
representative 

regions

Program
+

input

Whole-
program

pinball + DCFG

Requirement: Execution invariant region specification 
(PC+count for compute loop entries)

MT pinballs

pinball2elf

ELFie

GEM5

1. pinball-driven

2. ELFie-driven3. Binary-driven



Intel Software Development Emulator (Intel SDE)
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• The Intel® Software Development Emulator is a functional user-
level (ring 3) emulator for x86 (32b and 64b) new instructions built 

upon Pin and XED (X86 encoder/decoder)
• Goal: New instruction/register emulation between the time when 

they are designed and when the hardware is available. 
• Used for compiler development, architecture and workload analysis, 

and tracing for architecture simulators
• No special compilation required
• Supported on Windows/Linux/Mac OS
• Runs only in user space (ring 3)



How SDE Works
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• Based on Pin (http://pintool.intel.com )  and
XED decoder/encoder 
(https://github.com/intelxed/xed )

• Instrument new instructions

– Add call to emulation routine

– Delete original instruction

• Emulation routine:

– Update native state with emulated state

http://www.intel.com/software/sde

N O NO N NO O O

SDE emulation 
functions

New instruction
Legacy instruction

Host state Emulated 
state

http://pintool.intel.com/
https://github.com/intelxed/xed
http://www.intel.com/software/sde


See later sessions of the tutorial

Using SDE for PinPoints and LoopPoint

91



Summary: Simulation of Multi-threaded Programs: 
Tools & Methodologies

92

1. Pinball-driven
2. ELFie-driven
3. Binary-driven

SDE + LoopPoint
Compute-loop iterations as 

`Unit of work’

1. Simulation (Sniper) -based
2.ELFie-based / Binary+ROIPerf (not covered)

Whole-program performance vs
Region-predicted performance

Where to simulate?

Are the regions representative?

How to simulate?



Agenda
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Time (Eastern) Speaker Topic

13.20 to 13.30 Trevor E. Carlson Overview of the tutorial

13.30 to 14.20 Akanksha Chaudhari Performance analysis, simulation, sampling

14.20 to 15.20 Harish Patil Using tools: Pin, PinPlay, SDE, ELFies

15.20 to 15.40 Break

15.40 to 16.20 Alen Sabu Multi-threaded sampling and LoopPoint

16.20 to 17.00 Changxi Liu Sniper and LoopPoint demo

17.00 to 17.40 Zhantong Qiu Using LoopPoint with gem5



LoopPoint Tools: Sampled Simulation of Complex 
Multi-threaded Workloads using Sniper and gem5

Alen Sabu1, Changxi Liu1, Akanksha Chaudhari1, Harish Patil2, Wim Heirman2, 
Zhantong Qiu3, Jason Lowe-Power3, Trevor E. Carlson1

1National University of Singapore
2Intel Corporation

3University of California, Davis

International Symposium on High-Performance Computer Architecture, February 25th, 2023, Canada 



Multi-threaded Sampling and LoopPoint
Session 3

ALEN SABU, PHD CANDIDATE
NATIONAL UNIVERSITY OF SINGAPORE

95



Simulation in the Post-Dennard Era

96

Microarchitectural simulation is slow

Solution: Simulate 
regions of interest



Simulation in the Post-Dennard Era
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Benchmarks with 8 threads, 
static schedule, passive wait-
policy, simulated at 100 KIPS.

Microarchitectural simulation is slow

Solution: Simulate 
regions of interest



Selection of Regions of Interest

98

Program executions are structured as phases



Selection of Regions of Interest
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IPC

DL1

IL1

bpred

0B 50B 100B
Instructions

gzip-graphic

Program executions are structured as phases



Source: Sherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS’02

Selection of Regions of Interest

100

IPC

DL1

IL1

bpred

0B 50B 100B
Instructions

gzip-graphic

Program executions are structured as phases



Sampling using SimPoint

Selection of Regions of Interest
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BBV1 BBV2 BBV3 BBV4 BBV6BBV5 BBV7 BBV8 BBV9 BBV10 BBV11 BBV12

SimPoint

Program Execution



Sampling using SimPoint

Selection of Regions of Interest

102

BBV1 BBV2 BBV3 BBV4 BBV6BBV5 BBV7 BBV8 BBV9 BBV10 BBV11 BBV12

SimPoint

BBV1

BBV2

BBV4

Program Execution
BBV1 BBV2 BBV4



Sampling using SimPoint

Selection of Regions of Interest
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BBV1 BBV2 BBV3 BBV4 BBV6BBV5 BBV7 BBV8 BBV9 BBV10 BBV11 BBV12

SimPoint

BBV1

BBV2

BBV4
BBV3

BBV6

BBV9

BBV12

Program Execution
BBV3 BBV6 BBV9 BBV12



Sampling using SimPoint

Selection of Regions of Interest
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BBV1 BBV2 BBV3 BBV4 BBV6BBV5 BBV7 BBV8 BBV9 BBV10 BBV11 BBV12

SimPoint

BBV1

BBV2

BBV4

BBV5
BBV3

BBV6

BBV9

BBV12

BBV7

BBV8

BBV10

BBV11

Program Execution
BBV5 BBV7 BBV8 BBV10 BBV11



Sampling using SimPoint

Selection of Regions of Interest
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BBV1 BBV2 BBV3 BBV4 BBV6BBV5 BBV7 BBV8 BBV9 BBV10 BBV11 BBV12

SimPoint

BBV1

BBV2

BBV4

BBV5
BBV3

BBV6

BBV9

BBV12

BBV7

BBV8

BBV10

BBV11

25%
33.3%

41.7%

Program Execution



• SimPoint or SMARTS ➣ Instruction count-based techniques
§ Works well for single-threaded applications

Extending Single-threaded Techniques
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a b c d e

time

100M
ins

100M
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100M
ins

100M
ins

100M
ins

Simulation run 1

a b c d e

time

100M
ins

100M
ins

100M
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100M
ins

100M
ins

Simulation run 2



• SimPoint or SMARTS➣ Instruction count-based techniques
§ Inconsistent regions for multi-threaded applications

Extending Single-threaded Techniques

107

u v w x y

time

100M
ins

100M
ins

100M
ins

100M
ins

100M
ins

Simulation run 1

u v w x y

time

100M
ins

100M
ins

100M
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100M
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100M
ins

Simulation run 2

a b c dT0

T1

e a b c d e



1Alameldeen et al., “IPC Considered Harmful for Multiprocessor Workloads”, IEEE Micro 2006

Multi-threaded Sampling is Complex

108

Instruction count-based 
techniques are unsuitable1

Threads progress differently 
due to load imbalance

Representing parallelism 
among threads

Differentiating thread 
waiting from real work



1Alameldeen et al., “IPC Considered Harmful for Multiprocessor Workloads”, IEEE Micro 2006

Multi-threaded Sampling is Complex

109

Instruction count-based 
techniques are unsuitable1

Threads progress differently 
due to load imbalance

Representing parallelism 
among threads

Differentiating thread 
waiting from real work

Identify a unit of work that is invariant across executions



FlexPoints

Wenisch et al., “SimFlex: statistical sampling of computer system simulation”, IEEE Micro’06

Multi-threaded Sampling: Prior works

110

Assumes no thread interaction

Designed for non-synchronizing throughput workloads

Requires simulation of the full application

Instruction count-based sampling



Time-based Sampling

Carlson et al., “Sampled Simulation of Multithreaded Applications”, ISPASS’13
Ardestani et al., "ESESC: A fast multicore simulator using time-based sampling." HPCA, 2013

Multi-threaded Sampling: Prior works
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Extremely slow

Designed for synchronizing generic multi-threaded workloads

Requires simulation of the full application

Applies to generic multi-threaded workloads



BarrierPoint

Carlson et al., ”BarrierPoint: Sampled simulation of multi-threaded applications”, ISPASS’14

Multi-threaded Sampling: Prior works

112

Slow when inter-barrier regions are large

Designed for barrier-synchronized multi-threaded workloads

Scales well with number of barriers

u v

a b

Ba
rr

ie
r

w

c

Ba
rr

ie
rT0

T1



TaskPoint

Grass et al., “TaskPoint: Sampled simulation of task-based programs”, ISPASS’16

Multi-threaded Sampling: Prior works

113

Works only for the particular workload type

Designed for task-based workloads

Uses analytical models to improve accuracy



SimPoint1

SMARTS2

4Carlson et al., “Sampled Simulation of Multithreaded Applications”, ISPASS’13
5Carlson et al., ”BarrierPoint: Sampled simulation of multi-threaded applications”, ISPASS’14
6Grass et al., “TaskPoint: Sampled simulation of task-based programs”, ISPASS’16

The Unit of Work

114

1Sherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS’02
2Wunderlich et al., “SMARTS: Accelerating Microarchitecture Simulation via Rigorous Statistical Sampling”, ISCA’03
3Wenisch et al., “SimFlex: statistical sampling of computer system simulation”, IEEE Micro’06

Flex Points3

Extremely Slow
BarrierPoint5 

TaskPoint6

Multiprocessor Sampling

Application-specific Sampling

Single-threaded Sampling

Time-based sampling4

Multi-threaded Sampling

Instruction count Instruction count

Time
Inter-barrier regions

Task instances



SimPoint1

SMARTS2

4Carlson et al., “Sampled Simulation of Multithreaded Applications”, ISPASS’13
5Carlson et al., ”BarrierPoint: Sampled simulation of multi-threaded applications”, ISPASS’14
6Grass et al., “TaskPoint: Sampled simulation of task-based programs”, ISPASS’16

The Unit of Work

115

1Sherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS’02
2Wunderlich et al., “SMARTS: Accelerating Microarchitecture Simulation via Rigorous Statistical Sampling”, ISCA’03
3Wenisch et al., “SimFlex: statistical sampling of computer system simulation”, IEEE Micro’06

Flex Points3

Extremely Slow
BarrierPoint5 

TaskPoint6

Multiprocessor Sampling

Application-specific Sampling

Single-threaded Sampling

Time-based sampling4

Multi-threaded Sampling

Instruction count Instruction count

Time
Inter-barrier regions

Task instances

We consider generic loop iterations as the unit of work



LoopPoint Methodology
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Where to simulate

How to simulate



LoopPoint Methodology
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How to simulate

W
he
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 to
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binary, inputs



LoopPoint Methodology
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How to simulate
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2. Region 
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1. Loop-based 
Profiling

Program 
binary, inputs

Looppoints 
Specification



LoopPoint Methodology
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LoopPoint Methodology
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Loop-based Profiling
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1DCFG: Dynamic Control-Flow Graph

Loop-based Profiling

122

1. Loop-based 
Profiling

1. Loop-based 
Profiling



1DCFG: Dynamic Control-Flow Graph

Loop-based Profiling

123

DCFG1

Generation

Application 
Execution 
Recording

Vector 
Concatenation

Per-thread 
Feature 
Vectors

1. Loop-based 
Profiling

1. Loop-based 
Profiling

Synchronization
Filtering

Slice Generation
(PC, count)

Flow-control



Region Representation
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Program executionThreshold #Instructions

Region/Slice
(PC1, count1) (PC2, count2)

Loop A Loop B … Loop B Loop A Loop C ……

BBV:t0 BBV:t1 BBV:t2 BBV:t3

Concatenated BBV

Per-thread BBVs



Region Representation
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Program executionThreshold #Instructions

Region/Slice
(PC1, count1) (PC2, count2)

Loop A Loop B … Loop B Loop A Loop C ……

BBV:t0BBV:t1BBV:t2BBV:t3
Concatenated BBV

Per-thread BBVs



638.imagick_s/magick/morphology.c

2842 #if defined(MAGICKCORE_OPENMP_SUPPORT)

2843   #pragma omp parallel for schedule(static,4) shared(progress,status) \

2844 magick_threads(image,result_image,image->rows,1)

2845 #endif

2846 for (y=0; y < (ssize_t) image->rows; y++)

2847 {

……

2886 for (x=0; x < (ssize_t) image->columns; x++)

2887 {

3021 for (v=0; v < (ssize_t) kernel->height; v++) {

3022 for (u=0; u < (ssize_t) kernel->width; u++, k--) {

……

3034 } /* u */

……

3037 }  /* v */

3342      } /* x */

3357   } /* y */

……

A LoopPoint Region
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(
P
C
1
:
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t
1
)

(
P
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2
:
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o
u
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t
2
)

638.imagick_s, train input, 8 threads



Accuracy Results
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Prediction error wrt. performance of whole application
SPEC CPU2017 with train inputs, 8 threads

average



Accuracy Results
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Prediction error wrt. performance of whole application
SPEC CPU2017 with train inputs, 8 threads

average

Active: 2.33%
Passive: 2.23%



Changing Thread Count
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Runtime prediction error wrt. whole application runtime
NPB 3.3 with Class C inputs, 8 and 16 threads, passive wait-policy

8 cores: 2.87%
16 cores: 1.78%



Speedup
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Parallel and serial speedup achieved for LoopPoint

Serial
Actual
Theoretical

Parallel
Actual
Theoretical

SPEC CPU2017 with train inputs, 8 threads, active wait-policy

Serial: 9×
Parallel: 303×



Speedup
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Parallel and serial speedup achieved for LoopPoint
NPB with Class C inputs, 8 and 16 threads, passive wait-policy

Parallel

8 cores
Serial

16 cores
Serial
Parallel

Serial
Actual
Theoretical

Parallel
Actual
Theoretical

SPEC CPU2017 with train inputs, 8 threads, active wait-policy

Serial: 9×
Parallel: 303×

Serial: 49×
Parallel: 1031×

8 core

Serial: 31×
Parallel: 606×

16 core



Speedup
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Theoretical Speedup comparison with BarrierPoint
SPEC CPU2017 with ref inputs, 8 threads, passive wait-policy

Up to 31000X 
speedup!

LoopPoint

BarrierPoint

Serial

Serial

Parallel

Parallel

Serial: 244×
Parallel: 11587×



Full Applications Vs. Regions of Interest
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Application Train Ref
603.bwaves_s.1 33.33 1.01
603.bwaves_s.2 32.79 1.03
607.cactuBSSN_s.1 26.81 0.45
619.lbm_s.1 4.86 0.65
621.wrf_s.1 9.28 0.47
627.cam4_s.1 4.78 0.23
628.pop2_s.1 6.27 0.46
638.imagick_s.1 25.93 0.13
644.nab_s.1 21.15 0.32
644.nab_s.2 9.74 –
649.fotonik3d_s.1 12.93 1.55
654.roms_s.1 3.98 0.71
657.xz_s.1 21.43 0.74
657.xz_s.2 42.55 1.26

Fraction of regions to be simulated in detail for 
SPEC CPU2017 benchmarks using 8 threads
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A comparison of simulation wall times of SPEC CPU2017 benchmarks using 
train inputs and 8 threads on SDE-based IWPS (CLX)



• Links
§ SPEC2017 Looppoint-based checkpoints (ELFies1)

• 603.bwaves_s.1: https://mynbox.nus.edu.sg/u/lAblPcAG5X6GBuU-/9491eb22-b988-
4bc5-9865-991a66d20944?l

• 603.bwaves_s.2: https://mynbox.nus.edu.sg/u/8L13gqS9d8DivXeB/6d14af21-6c4e-
413a-b046-3c6115a211fc?l

§ LoopPoint GitHub: https://github.com/nus-comparch/looppoint
§ ELFies GitHub: https://github.com/intel/pinball2elf
§ Web page: https://looppoint.github.io
§ Short talk: https://youtu.be/Tr6O9MkT42g
§ Questions: alen@u.nus.edu.sg, tcarlson@nus.edu.sg

1Representative checkpoints of SPEC CPU2017 benchmarks with 8 OpenMP threads, active wait-policy, 
static schedule, original binaries compiled with ICC (-O3) for Nehalem architecture.

More Information
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https://mynbox.nus.edu.sg/u/lAblPcAG5X6GBuU-/9491eb22-b988-4bc5-9865-991a66d20944?l
https://mynbox.nus.edu.sg/u/lAblPcAG5X6GBuU-/9491eb22-b988-4bc5-9865-991a66d20944?l
https://mynbox.nus.edu.sg/u/8L13gqS9d8DivXeB/6d14af21-6c4e-413a-b046-3c6115a211fc?l
https://mynbox.nus.edu.sg/u/8L13gqS9d8DivXeB/6d14af21-6c4e-413a-b046-3c6115a211fc?l
https://github.com/nus-comparch/looppoint
https://github.com/intel/pinball2elf
https://looppoint.github.io/
https://youtu.be/Tr6O9MkT42g
mailto:alen@u.nus.edu.sg
mailto:tcarlson@nus.edu.sg


Agenda
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Time (Eastern) Speaker Topic

13.20 to 13.30 Trevor E. Carlson Overview of the tutorial

13.30 to 14.20 Akanksha Chaudhari Performance analysis, simulation, sampling

14.20 to 15.20 Harish Patil Using tools: Pin, PinPlay, SDE, ELFies

15.20 to 15.40 Break

15.40 to 16.20 Alen Sabu Multi-threaded sampling and LoopPoint

16.20 to 17.00 Changxi Liu Sniper and LoopPoint demo

17.00 to 17.40 Zhantong Qiu Using LoopPoint with gem5



LoopPoint Tools: Sampled Simulation of Complex 
Multi-threaded Workloads using Sniper and gem5

Alen Sabu1, Changxi Liu1, Akanksha Chaudhari1, Harish Patil2, Wim Heirman2, 
Zhantong Qiu3, Jason Lowe-Power3, Trevor E. Carlson1

1National University of Singapore
2Intel Corporation

3University of California, Davis

International Symposium on High-Performance Computer Architecture, February 25th, 2023, Canada 



Sniper and LoopPoint Demo
Session 4

CHANGXI LIU, PHD CANDIDATE
NATIONAL UNIVERSITY OF SINGAPORE
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The Architect’s Tools – Design Waterfall
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Analytical models

Cycle-accurate 
simulation
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Fast or accurate?

139

RTL simulators

Architectural sim.

10% 0%

Sniper

50%

1,000 x

1,000 x



• August 2010: Sniper forked from MIT Graphite
• November 2011: SC’11 paper, first public release
• Today:

§ Interval and Instruction-window-centric core models
§ 7000+ downloads from 100+ countries
§ Active mailing list
§ 1200+ citations (SC’11 & TACO’12 papers)

Sniper History

140

snipersim.org downloads by quarter



Simulation in Sniper
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functional
simulator 

(Pin)
memory hierarchy

simulator

branch predictor
simulator

processor cores

A single-process,
multithreaded
workload (v1.0)

Multiple,
single-threaded
workloads (v2.0)

Execution-driven simulation

Trace-driven simulation



Simulation in Sniper with SIFT

142

memory
hierarchy
simulator

processor cores

Functional-first simulation + timing-feedback

Pin

...

A bi-directional 
single-thread

SIFT connection

PinPlay

Pin
+SDE



$ run-sniper -c gainestown --roi -- ./test/fft/fft -p2
[SNIPER] Start
[SNIPER] --------------------------------------------------------------------------------
[SNIPER] Sniper using Pin frontend
[SNIPER] Running pre-ROI region in  CACHE_ONLY mode
[SNIPER] Running application ROI in DETAILED mode
[SNIPER] Running post-ROI region in FAST_FORWARD mode
[SNIPER] --------------------------------------------------------------------------------

FFT with Blocking Transpose
1024 Complex Doubles
2 Processors

[SNIPER] Enabling performance models
[SNIPER] Setting instrumentation mode to DETAILED
[SNIPER] Disabling performance models
[SNIPER] Leaving ROI after 2.08 seconds
[SNIPER] Simulated 1.1M instructions, 0.9M cycles, 1.22 IPC
[SNIPER] Simulation speed 545.5 KIPS (272.8 KIPS / target core - 3666.2ns/instr)
[SNIPER] Setting instrumentation mode to FAST_FORWARD

PROCESS STATISTICS
...
[SNIPER] End
[SNIPER] Elapsed time: 5.97 seconds

Running Sniper

143

Configuration Region of interest markers in codeWorkload command line



sim.out: Quick overview of basic performance results

Simulation results
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| Core 0     | Core 1    
Instructions                       |     506505 |     505562
Cycles                             |     469101 |     468620
Time (ns)                          |     176354 |     176173

Branch predictor stats               |            |           
num incorrect                      |       1280 |       1218
misprediction rate                 |      7.70% |      7.42%
mpki |       2.53 |       2.41

Cache Summary                        |            |           
Cache L1-I                         |            |           
num cache accesses               |      46642 |      46555
num cache misses                 |        217 |        178
miss rate                        |      0.47% |      0.38%
mpki |       0.43 |       0.35

Cache L1-D                         |            |           
num cache accesses               |     332771 |     332412
num cache misses                 |        517 |        720
miss rate                        |      0.16% |      0.22%
mpki |       1.02 |       1.42

Cache L2                           |            |           
num cache accesses               |        984 |       1090
num cache misses                 |        459 |        853



• Where did my cycles go?
§ Cycles/time per instruction
§ Broken up in components

• Base: ideal execution, no bottlenecks
• Add “lost” cycles do to each HW structure

§ Normalize by either
• Number of instructions (CPI stack)
• Execution time (time stack)

• Different from miss rates: 
cycle stacks directly quantify the effect on performance

• (Also: top-down analysis in VTune)

Cycle stacks

145

CPI

DRAM
I-cache
Branch
Base



• Cycle stacks through time

Advanced visualization

146



• Clone from https://github.com/snipersim/snipersim
• export CC=gcc-9; export CXX=g++-9
• make
• Set SNIPER_ROOT to point to the Sniper base directory
• All set to use Sniper 8.0!
• Testing:

§ make -C test/fft

Downloading Sniper 8.0
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https://github.com/snipersim/snipersim


• Prerequisites
§ x86-based Linux machine
§ Require GCC 9
§ Python
§ Docker

Downloading LoopPoint
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• Opensource code
§ https://github.com/nus-comparch/looppoint.git
§ Clone the repo

Downloading LoopPoint
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https://github.com/nus-comparch/looppoint.git


• make build
§ Build docker image

Building LoopPoint
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Successfully built b006ee297a64
Successfully tagged ubuntu:18.04-looppoint



• make build
• make

§ Run the docker image

Building LoopPoint
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• make build
• make
• make apps

§ Build the demo applications
§ Source code of the apps

• apps/demo/matrix-omp
• apps/demo/dotproduct-omp

Building LoopPoint
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• make build
• make
• make apps
• make tools

§ Build Sniper and LoopPoint tools

Building LoopPoint
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Sniper build completed

...

Downloading 
Sniper

Downloading 
Intel SDE



• Opensource code
§ https://github.com/nus-comparch/looppoint.git
§ Clone the repo

• LoopPoint script
§ make build

• Build docker image

§ make
• Run docker image

§ make apps
• Build the demo applications

§ make tools
• Build Sniper and LoopPoint tools

Building LoopPoint
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https://github.com/nus-comparch/looppoint.git


• Use LoopPoint driver script
§ ./run-looppoint.py –h
§ Provides the information on how to run the tool

Running LoopPoint
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• Example run command
§ ./run-looppoint.py -p demo-matrix-1 -n 8 --force

Running LoopPoint
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• The LoopPoint driver script
§ Profiling the application 

Running LoopPoint
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• The LoopPoint driver script
§ Profiling the application  

• make_mt_pinball : Generate whole-program pinball
• gen_dcfg : Generate DCFG file to identify loop information
• gen_bbv : Generate feature vector of each region
• gen_cluster : Cluster regions

Running LoopPoint
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• Makes Pin-based analyses repeatable.
• Command:

§ $SDE_KIT/pinplay-scripts/sde_pinpoints.py --mode mt --
cfg=$CFGFILE --log_options="-start_address main -log:fat
-log:basename $WPP_BASE” --replay_options="-replay:strace" –l

• Generates a whole-program pinball for further profiling steps

Fat Pinball
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• A dynamic control-flow graph (DCFG) is a specialized control-flow 
graph that adds data from a specific execution of a program

• C++ DCFG APIs available for accessing the data
§ DCFG_LOOP_CONTAINER::get_loop_ids

• Get the set of loop IDs
§ DCFG_LOOP

• get_routine_id : get the function that the loop belongs to 
• get_parent_loop_id : get the parent loop 

DCFG Generation
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• A dynamic control-flow graph (DCFG) is a specialized control-flow 
graph that adds data from a specific execution of a program

• C++ DCFG APIs available for accessing the data.
• More APIs can be found in

§ tools/sde-external-9.14.0-2022-10-25-lin/pinkit/sde-example/include
• dcfg_api.H
• dcfg_pin_api.H
• dcfg_trace_api.H

DCFG Generation
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• Collect Loop Information
• Command:

§ $SDE_BUILD_KIT/pinplay-scripts/replay.py --pintool=sde-global-
looppoint.so --pintool_options “-dcfg -replay:deadlock_timeout
0 -replay:strace -dcfg:out_base_name $DCFG_BASE $WPP_BASE”

§ -dcfg : enable DCFG generation
§ DCFG_BASE : the basename of DCFG that is generated

DCFG Generation
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• Profiling the feature vector of each region
• Command:

§ $SDE_BUILD_KIT/pinplay-scripts/sde_pinpoints.py --pintool="sde-global-looppoint.so"
--global_regions --pccount_regions --cfg $CFG --whole_pgm_dir $WPP_DIR --mode mt -S
$SLICESIZE -b --replay_options "-replay:deadlock_timeout 0 -global_profile -
emit_vectors 0 -filter_exclude_lib libgomp.so.1 -filter_exclude_lib libiomp5.so -
looppoint:global_profile -looppoint:dcfg-file $DCFG -looppoint:main_image_only 1 -
looppoint:loop_info $PROGRAM.$INPUT.loop_info.txt -flowcontrol:verbose 1 -
flowcontrol:quantum 1000000 -flowcontrol:maxthreads $NCORES”

§ -pccount_regions : (PC, count)-based region information
§ -S $SLICESIZE: The global instruction count for each region
§ -filter_exclude_lib: Exclude libraries from profiling information

BBV Generation
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• Profiling the feature vector of each region
• Command:

§ $SDE_BUILD_KIT/pinplay-scripts/sde_pinpoints.py --pintool="sde-global-looppoint.so"
--global_regions --pccount_regions --cfg $CFG --whole_pgm_dir $WPP_DIR --mode mt -S
$SLICESIZE -b --replay_options "-replay:deadlock_timeout 0 -global_profile -
emit_vectors 0 -filter_exclude_lib libgomp.so.1 -filter_exclude_lib libiomp5.so -
looppoint:global_profile -looppoint:dcfg-file $DCFG -looppoint:main_image_only 1 -
looppoint:loop_info $PROGRAM.$INPUT.loop_info.txt -flowcontrol:verbose 1 -
flowcontrol:quantum 1000000 -flowcontrol:maxthreads $NCORES”

§ -looppoint:main_image_only: Select only main image for choosing markers
§ -looppoint:loop_info : Utilize loop information as the marker of each region
§ -flowcontrol:quantum : synchronize each thread every 1000000 instructions

BBV Generation
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• Cluster all regions into several groups. 
§ SimPoint [1]
§ Utilize feature vectors of all threads
§ kmeans algorithm

[1] Sherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS’02

Clustering
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• Cluster all regions into several groups.
• Command

§ $SDE_BUILD_KIT/pinplay-scripts/sde_pinpoints.py --pintool="sde-
global-looppoint.so" --cfg $CFG --whole_pgm_dir $WPP_DIR -S
$SLICESIZE --warmup_factor=2 --maxk=$MAXK --append_status -s --
simpoint_options="-dim $DIM -coveragePct 1.0 -maxK $MAXK”

§ DIM : The reduced dimension of the vector that BBVs are projected to
§ MAXK : Maximum number of clusters for kmeans

Clustering
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• The LoopPoint driver script
§ Profiling Results:

• matrix.1_267851.global.pinpoints.csv
• (start-pc, start-pc-count ), (end-pc, end-pc-count)

Running LoopPoint
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• The LoopPoint driver script
§ Profiling Results:

• matrix.1_267851.global.pinpoints.csv
• (start-pc, start-pc-count ), (end-pc, end-pc-count)
• Cluster group id

Running LoopPoint
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• The LoopPoint driver script
§ Profiling Results:

• matrix.1_267851.global.pinpoints.csv
• (start-pc, start-pc-count ), (end-pc, end-pc-count)
• Cluster group id
• Cluster multiplier

Running LoopPoint
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• The LoopPoint driver script
§ Profiling the application  

• matrix.1_267851.global.pinpoints.csv 
• Sampled Simulation : (start-pc, start-pc-count ), (end-pc, 
end-pc-count), cluster group id

• Extrapolation : cluster group id, cluster-multiplier

Running LoopPoint
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• The LoopPoint driver script
§ Profiling the application 
§ Sampled simulation of selected regions

Running LoopPoint
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Simulation using Sniper
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• LoopPoint support in Sniper 8.0
• Handle the beginning and ending of representative regions

• Using PC-based markers

§ Sniper shifts simulation modes based on signals from Pin/SDE



Simulation using Sniper
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• LoopPoint support in Sniper 8.0
§ Handle the beginning and ending of representative regions
§ ./run-sniper -n 8 -gscheduler/type=static -cgainestown -

ssimuserroi --roi-script --trace-args=-pinplay:control
start:address:<PC>:count<Count>:global --trace-args=-pinplay:control
stop:address:<PC>:count<Count>:global -- <app cmd>

§ Region start: -control start:address:<PC>:count<Count>
§ Region end: -control end:address:<PC>:count<Count>
§ PC, Count : LoopPoint region boundaries
§ Note: Use -control if SDE is used instead of Pin/Pinplay 



Simulation using Sniper
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.

-- ./base.exe

Start PC and count

End PC and countApplication



Simulation using Sniper
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Warmup 
ends

Fast-forwarding 
the rest

Detailed simulation



• The LoopPoint driver script
§ Profiling the application 
§ Sampled simulation of selected regions
§ Extrapolation of performance results

Running LoopPoint
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Extrapolation  of Performance Result
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• Runtime of corresponding representative region : region_runtime
• Scaling factor : multiplier



• The LoopPoint driver script
§ Profiling the application 
§ Sampled simulation of selected regions
§ Extrapolation of performance results

• Predicted runtime using sampled simulation

Running LoopPoint
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• The LoopPoint driver script
§ Profiling the application 
§ Sampled simulation of selected regions
§ Extrapolation of performance results

• Predicted runtime using sampled simulation
• The error rate of obtained using sampled simulation

Running LoopPoint
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Config file

• Create a config file in the application directory (format as below)

Running Custom Workloads
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603.bwaves_s.1.cfg

• Run command:
$LOOPPOINT_ROOT/run-looppoint.py -c 603.bwaves_s.1.cfg -w active -n 8 --force



Agenda
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Time (Eastern) Speaker Topic

13.20 to 13.30 Trevor E. Carlson Overview of the tutorial

13.30 to 14.20 Akanksha Chaudhari Performance analysis, simulation, sampling

14.20 to 15.20 Harish Patil Using tools: Pin, PinPlay, SDE, ELFies

15.20 to 15.40 Break

15.40 to 16.20 Alen Sabu Multi-threaded sampling and LoopPoint

16.20 to 17.00 Changxi Liu Sniper and LoopPoint demo

17.00 to 17.40 Zhantong Qiu Using LoopPoint with gem5
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Using LoopPoint with gem5
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Quick background on gem5

Main difference between gem5 and Sniper?
gem5 is an execute-in-execute simulator

Two “modes:”
Full-system: boots a Linux kernel, requires disk image, etc.
Syscall emulation: “Fakes” the Linux system calls in gem5

We will be using syscall emulation (SE) mode

gem5 is a python interpreter which configures and controls simulation
We will show the python code needed to set up LoopPoints/ELFies



How to perform LoopPoint sampling in gem5?

● Our implementation focuses on using the checkpoint methodology
○ We take a checkpoint at the beginning of the selected region with a fast and simple 

architecture setup, and restore the checkpoints with the desired architecture. 

● The LoopPoint module in gem5 is designed to use with the gem5 standard 
library
○ The gem5 standard library provides flexible and convenience modules for simulation setups.

● In gem5, we use checkpoint to save the state of the simulation. It allows us 
to restore and simulate a particular region of the whole simulation with 
different architectures. 



A small example of what can and can not change when 
restoring a gem5 checkpoint

When taking checkpoints:

When restoring a checkpoint:



A tutorial on checkpointing in gem5 was given as a part of the gem5 2022 
Bootcamp. A recording of this event can be found within this link: 

https://gem5bootcamp.github.io/gem5-bootcamp-
env/modules/extra%20topics/checkpointing-commmonitor

You can find example scripts of taking checkpoints in the gem5 directory:

https://gem5bootcamp.github.io/gem5-bootcamp-env/modules/extra%20topics/checkpointing-commmonitor
https://gem5bootcamp.github.io/gem5-bootcamp-env/modules/extra%20topics/checkpointing-commmonitor


How to take checkpoints for LoopPoint sampling?

LoopPoint
Data File

LoopPoint
CsvLoader

LoopPoint
JsonLoader

If it’s a CSV file

If it’s a JSON file

Simulation 
loop

Setup 
workload

LoopPoint
Save 
Checkpoint
Generator

When 
LoopPoint 
exit event 
raises

Checkpoints



The LoopPoint JSON file

"1": {
"simulation": {

"start": {
"pc": 4221392,
"global": 211076617,
"relative": 15326617

},
"end": {

"pc": 4221392,
"global": 219060252,
"relative": 23310252

}
},
"multiplier": 4.0,
"warmup": {

"start": {
"pc": 4221056,
"count": 23520614

},
"end": {

"pc": 4221392,
"count": 211076617

}
}

},

"2": {
"simulation": {

"start": {
"pc": 4206672,
"global": 1

},
"end": {

"pc": 4221392,
"global": 6861604,
"relative": 6861604

}
},
"multiplier": 1.0

}



How to take checkpoints for LoopPoint sampling?

LoopPoint
Data File

LoopPoint
CsvLoader

LoopPoint
JsonLoader

If it’s a CSV file

If it’s a JSON file

Simulation 
loop

Setup 
workload

LoopPoint
Save 
Checkpoint
Generator

When 
LoopPoint 
exit event 
raises

Checkpoints



A config script with a simple architecture



LoopPoint
Data File

LoopPoint
CsvLoader

LoopPoint
JsonLoader

If it’s a CSV file

If it’s a JSON file

OR



LoopPoint
CsvLoader

Setup 
workload

LoopPoint
JsonLoader



Simulation 
loop

LoopPoint
Save 
Checkpoint
Generator

When 
LoopPoint 
exit event 
raises

Checkpoints





Example command to run the checkpoint script:

build/X86/gem5.opt create-checkpoints.py

Example output



Example checkpoints:



The process is similar for restoring a checkpoint

LoopPoint
Data File LoopPoint

JsonLoader
Simulation 
loop

Setup 
workload

Checkpoint

Custom
Generator

When 
LoopPoint 
exit event 
raises

Region id



LoopPoint
Data File LoopPoint

JsonLoader

Region id



Setup 
workload

CheckpointRegion id



Simulation 
loop

Custom
Generator

When 
LoopPoint 
exit event 
raises



Where to find the LoopPoint related files?



Where to find the LoopPoint related files?



Where to find the LoopPoint related files?



Debug Flag
The debug flag is activated by passing the option in the command line. For example:

It shows all the PCs and PC Count pairs that the simulation is tracking. 

It also shows the PC Count pair that’s struggling the exit event and the remaining pairs that 
haven’t been encountered.

build/X86/gem5.opt —–debug–flags=PcCountTracker example-script.py



Useful gem5 tutorials

Link to gem5 standard library tutorial:

https://www.gem5.org/documentation/gem5-stdlib/overview

Link to gem5 2022 bootcamp website:

https://gem5bootcamp.github.io/gem5-bootcamp-env/

https://www.gem5.org/documentation/gem5-stdlib/overview
https://gem5bootcamp.github.io/gem5-bootcamp-env/


Thank you!
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