
LoopPoint Tools: Sampled Simulation of Complex
Multi-threaded Workloads using Sniper and gem5

Alen Sabu1, Changxi Liu1, Akanksha Chaudhari1, Harish Patil2, Wim Heirman2,
Zhantong Qiu3, Jason Lowe-Power3, Trevor E. Carlson1

1National University of Singapore
2Intel Corporation

3University of California, Davis

International Symposium on High-Performance Computer Architecture, February 25th, 2023, Canada

Agenda

1

Time (Eastern) Speaker Topic

13.20 to 13.30 Trevor E. Carlson Overview of the tutorial

13.30 to 14.20 Akanksha Chaudhari Performance analysis, simulation, sampling

14.20 to 15.20 Harish Patil Using tools: Pin, PinPlay, SDE, ELFies

15.20 to 15.40 Break

15.40 to 16.20 Alen Sabu Multi-threaded sampling and LoopPoint

16.20 to 17.00 Changxi Liu Sniper and LoopPoint demo

17.00 to 17.40 Zhantong Qiu Using LoopPoint with gem5

Agenda

2

Time (Eastern) Speaker Topic

13.20 to 13.30 Trevor E. Carlson Overview of the tutorial

13.30 to 14.20 Akanksha Chaudhari Performance analysis, simulation, sampling

14.20 to 15.20 Harish Patil Using tools: Pin, PinPlay, SDE, ELFies

15.20 to 15.40 Break

15.40 to 16.20 Alen Sabu Multi-threaded sampling and LoopPoint

16.20 to 17.00 Changxi Liu Sniper and LoopPoint demo

17.00 to 17.40 Zhantong Qiu Using LoopPoint with gem5

• Speaker: Akanksha Chaudhari
§ Research Assistant, National University of Singapore

• Topics Covered
§ Architectural exploration and evaluation
§ Simulation as a tool for performance estimation
§ Methods for fast estimation using simulation
§ State-of-the-art single-threaded sampled simulation techniques

Performance Analysis, Simulation, Sampling

3

• Speaker: Harish Patil
§ Principal Engineer, Intel Corporation

• Topics Covered
§ Binary instrumentation using Pin or writing Pintools
§ PinPlay kit and PinPlay-enabled tools
§ SDE build kit for microarchitecture emulation
§ Checkpointing threaded applications using PinPlay, SDE
§ Detailed discussion on ELFies including its generation and usage

Using Tools: Pin, PinPlay, SDE, ELFies

4

• Speaker: Alen Sabu
§ PhD Candidate, National University of Singapore

• Topics Covered
§ Sampled simulation of multi-threaded applications
§ Existing methodologies and their drawbacks
§ Detailed discussion on LoopPoint methodology
§ Experimental results of LoopPoint

Multi-threaded Sampling and LoopPoint

5

• Speaker: Changxi Liu
§ PhD Candidate, National University of Singapore

• Topics Covered
§ Overview of Sniper simulator
§ High-level structure of LoopPoint code
§ Demo on how to use LoopPoint tools
§ Sampling custom workloads using LoopPoint

Sniper and LoopPoint Demo

6

• Speaker: Zhantong Qiu
§ Undergraduate student, University of California, Davis

• Topics Covered
§ Overview of gem5 simulator
§ Structure of LoopPoint integration code
§ Demo on simulating LoopPoint regions on gem5
§ Running ELFies on gem5

Using LoopPoint with gem5

7

Agenda

8

Time (Eastern) Speaker Topic

13.20 to 13.30 Trevor E. Carlson Overview of the tutorial

13.30 to 14.20 Akanksha Chaudhari Performance analysis, simulation, sampling

14.20 to 15.20 Harish Patil Using tools: Pin, PinPlay, SDE, ELFies

15.20 to 15.40 Break

15.40 to 16.20 Alen Sabu Multi-threaded sampling and LoopPoint

16.20 to 17.00 Changxi Liu Sniper and LoopPoint demo

17.00 to 17.40 Zhantong Qiu Using LoopPoint with gem5

LoopPoint Tools: Sampled Simulation of Complex
Multi-threaded Workloads using Sniper and gem5

Alen Sabu1, Changxi Liu1, Akanksha Chaudhari1, Harish Patil2, Wim Heirman2,
Zhantong Qiu3, Jason Lowe-Power3, Trevor E. Carlson1

1National University of Singapore
2Intel Corporation

3University of California, Davis

International Symposium on High-Performance Computer Architecture, February 25th, 2023, Canada

Performance Analysis, Simulation, Sampling
Session 1

AKANKSHA CHAUDHARI, RESEARCH ASSISTANT
NATIONAL UNIVERSITY OF SINGAPORE

10

Source: https://www.intel.com

Architectural Trends in Processor Design

11

Moore Law number of transistor per device: past, present, future [Intel]

Source: https://www.intel.com

Architectural Trends in Processor Design

12

Moore Law number of transistor per device: past, present, future [Intel]

2x transistors
every two

years

Source: https://www.intel.com/

Architectural Trends in Processor Design

13

Transistor innovations over time

Source: https://www.intel.com/

Architectural Trends in Processor Design

14

Transistor innovations over time

Higher performance

Reducing sizes

Exploration and Evaluation of New Ideas

15

Whoa! So many
design choices…
Which one do I

pick?!

Idea #1

Idea #2

Well, just
go with the
BEST one.

Idea #3

Idea #73969218!

Idea #96736

Idea #96738

Architect #1 Architect #2

Cool.

The best Idea

Exploration and Evaluation of New Ideas

16

The Architect IRL

The Important Question:

So how do we then explore new ideas quickly and evaluate
them accurately to find the BEST idea?

zzz…

• A “good” idea optimizes a finite set of performance metrics:

Exploration and Evaluation of New Ideas

17

M = {𝑚!, 𝑚", … , 𝑚#, … , 𝑚$}

Computational
Speed Energy

Efficiency
Memory

Utilization

Good idea

• A “good” idea optimizes a finite set of performance metrics:

Exploration and Evaluation of New Ideas

18

M = {𝑚!, 𝑚", … , 𝑚#, … , 𝑚$}Good idea

How to assess whether a given idea
improves the target metrics?

Different evaluation methods:

• Theoretical proof
• Analytical modeling

• Simulation
• Prototyping

• Actual implementation

Exploration and Evaluation of New Ideas

19

Different evaluation methods:

• Theoretical proof

• Analytical modelling

• Simulation
• Prototyping

• Actual implementation

Exploration and Evaluation of New Ideas

20

Different evaluation methods:

• Theoretical proof

• Analytical modelling

• Simulation
• Prototyping

• Actual implementation

Exploration and Evaluation of New Ideas

21

Different evaluation methods:

• Theoretical proof

• Analytical modelling

• Simulation
• Prototyping

• Actual implementation

Exploration and Evaluation of New Ideas

22

Different evaluation methods:

• Theoretical proof

• Analytical modelling

• Simulation
• Prototyping

• Actual implementation

Exploration and Evaluation of New Ideas

23

Different evaluation methods:

• Theoretical proof

• Analytical modelling

• Simulation
• Prototyping

• Actual implementation

Exploration and Evaluation of New Ideas

24

Different evaluation methods:

• Theoretical proof
• Analytical modelling

• Simulation
• Prototyping

• Actual implementation

Exploration and Evaluation of New Ideas

25

Different evaluation methods:

• Theoretical proof

• Analytical modelling

• Simulation
• Prototyping

• Actual implementation

An “Evaluation” of the Evaluation Methods

26

Different evaluation methods:

• Theoretical proof

• Analytical modelling

• Simulation
• Prototyping

• Actual implementation

An “Evaluation” of the Evaluation Methods

27

Fairly complex for
modern architectures

Different evaluation methods:

• Theoretical proof

• Analytical modelling

• Simulation
• Prototyping

• Actual implementation

An “Evaluation” of the Evaluation Methods

28

Evaluating
different workload
profiles is difficult

Different evaluation methods:

• Theoretical proof

• Analytical modelling

• Simulation
• Prototyping

• Actual implementation

An “Evaluation” of the Evaluation Methods

29

Evaluating
different workload
profiles is difficult

Worst-case
estimates can be

misleading

Different evaluation methods:

• Theoretical proof

• Analytical modelling

• Simulation
• Prototyping

• Actual implementation

An “Evaluation” of the Evaluation Methods

30

Different evaluation methods:

• Theoretical proof

• Analytical modelling

• Simulation
• Prototyping

• Actual implementation

An “Evaluation” of the Evaluation Methods

31

Expensive!

Different evaluation methods:

• Theoretical proof

• Analytical modelling

• Simulation
• Prototyping

• Actual implementation

An “Evaluation” of the Evaluation Methods

32

(Relatively) less expensive

Different evaluation methods:

• Theoretical proof

• Analytical modelling

• Simulation
• Prototyping

• Actual implementation

An “Evaluation” of the Evaluation Methods

33

(Relatively) less expensive

BUT limited by the
capability of its

components

Different evaluation methods:

• Theoretical proof

• Analytical modelling

• Simulation
• Prototyping

• Actual implementation

An “Evaluation” of the Evaluation Methods

34

Not feasible for
exploration of large

design spaces!

Different evaluation methods:

• Theoretical proof

• Analytical modelling

• Simulation
• Prototyping

• Actual implementation

An “Evaluation” of the Evaluation Methods

35

Different evaluation methods:

• Theoretical proof

• Analytical modelling

• Simulation
• Prototyping

• Actual implementation

An “Evaluation” of the Evaluation Methods

36

Allows for varying
degrees of abstractions

and accuracy

Different evaluation methods:

• Theoretical proof

• Analytical modelling

• Simulation
• Prototyping

• Actual implementation

An “Evaluation” of the Evaluation Methods

37

Feasible exploration of
large design spaces

Different evaluation methods:

• Theoretical proof

• Analytical modelling

• Simulation
• Prototyping

• Actual implementation

An “Evaluation” of the Evaluation Methods

38

Most feasible way to explore and
evaluate a large and complex design

space in terms of time, cost and
efficiency!

• How does simulation work?

§ Mimics the key functional and/or timing behavior of a system to reflect its
performance in terms of the target metrics.

Simulation: An Overview

39

• How does simulation work?

§ Mimics the key functional and/or timing behavior of a system to reflect its
performance in terms of the target metrics.

• How does this help us?
§ Enables fast exploration of design space (to discover the next big idea!).
§ Allows verification, debugging, and optimization of existing systems.
§ Also enables evaluation and understanding of non-existent systems.

Simulation: An Overview

40

• How does simulation work?

§ Mimics the key functional and/or timing behavior of a system to reflect its
performance in terms of the target metrics.

• How does this help us?
§ Enables fast exploration of design space (to discover the next big idea!).
§ Allows verification, debugging, and optimization of existing systems.
§ Also enables evaluation and understanding of non-existent systems.

• Caution: A simulator is only as good as the person who uses it.

Simulation: An Overview

41

• An ideal simulation technique:

§ High speed à For faster exploration.
§ High flexibility à For wider exploration.
§ High accuracy/low simulation error à For accurate evaluation.

• Practical simulation techniques involve trade-offs:
§ Speed vs. accuracy
§ Accuracy vs. flexibility
§ Flexibility vs. speed

Simulation: An Overview

42

• An ideal simulation technique:

§ High speed à For faster exploration.
§ High flexibility à For wider exploration.
§ High accuracy/low simulation error à For accurate evaluation.

• Practical simulation techniques involve trade-offs:
§ Speed vs. accuracy
§ Accuracy vs. flexibility
§ Flexibility vs. speed

Simulation: An Overview

43

Different Simulation Techniques

44

SIMULATORS

Timing SimulatorsFunctional Simulators
(Based on level of detail)

Different Simulation Techniques

45

SIMULATORS

Timing SimulatorsFunctional Simulators
(Based on level of detail)

• Implement only architectural details and
achieve same functionality as the modeled
architecture.

• Tracks architectural stats (memory access
locality, instruction count/mix).

• Faster, but cannot track detailed
microarchitectural parameters.

Different Simulation Techniques

46

SIMULATORS

Timing SimulatorsFunctional Simulators
(Based on level of detail)

• Implement the microarchitecture.

• Produces detailed microarchitectural stats
(IPC, runtime, memory performance).

• Do not have to emulate the functionality of
the modeled architecture.

Different Simulation Techniques

47

SIMULATORS

Timing SimulatorsFunctional Simulators
(Based on level of detail)

Integrated Functional and
Timing Simulators

More flexible and accurate!

Different Simulation Techniques

48

SIMULATORS

Timing SimulatorsFunctional Simulators
(Based on level of detail)

Integrated Functional and
Timing Simulators

More flexible and accurate!

What about
speed?

• Partial simulation and extrapolation

§ Simulating the first 1 billion instructions in detail.

Techniques to Simulate Faster

49

Detailed simulation

• Partial simulation and extrapolation

§ Simulating the first 1 billion instructions in detail.

§ Fast-forwarding to skip the initialization phase and then simulating in detail.

Techniques to Simulate Faster

50

Fast-forwarding using
Functional simulation

Detailed simulation

• Partial simulation and extrapolation

§ Simulating the first 1 billion instructions in detail.

§ Fast-forwarding to skip the initialization phase and then simulating in detail.

§ Fast-forwarding, warming up μ-architectural state, and then simulating in detail.

Techniques to Simulate Faster

51

Fast-forwarding using
Functional simulation

Detailed simulation

Warming up the
microarchitectural state

• Partial simulation and extrapolation

§ Simulating the first 1 billion instructions in detail.

§ Fast-forwarding to skip the initialization phase and then simulating in detail.

§ Fast-forwarding, warming up μ-architectural state, and then simulating in detail.

• Workload reduction: simulating for reduced input sets or loop counts.

Techniques to Simulate Faster

52

Fast-forwarding using
Functional simulation

Detailed simulation

Warming up the
microarchitectural state

• Partial simulation and extrapolation

§ Simulating the first 1 billion instructions in detail.

§ Fast-forwarding to skip the initialization phase and then simulating in detail.

§ Fast-forwarding, warming up μ-architectural state, and then simulating in detail.

• Workload reduction: simulating for reduced input sets or loop counts.

Techniques to Simulate Faster

53

Fast-forwarding using
Functional simulation

Detailed simulation

Warming up the
microarchitectural state

• Problems with these techniques:
§ Partial simulation and extrapolation

• Fails to capture global variations in program behavior and performance.

§ Workload reduction
• Benchmark behavior may vary significantly across different input sizes.
• Simulation with reduced input sets or loop counts does not reflect the actual performance.

Source: Sherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS’02

Techniques to Simulate Faster

54

• Sampling enables the simulation of selective representative regions.
§ Subset of regions within a program execution that represent the behavior of the entire

application when extrapolated.

• Selecting representative regions
§ Targeted sampling (like in SimPoint)

§ Statistical sampling (like in SMARTS)

Sampled Simulation to the Rescue!

55

(Full) program execution

Representative regions

• Large-scale program behaviors vary significantly over their run times.

• Main goal: To automatically and efficiently analyze program behavior over the
different phases of execution.

• SimPoint uses Basic Block Vectors (BBV) as a hardware-independent metric for
characterizing the program behavior in different phases.

Source: Sherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS’02

Sampled Simulation Techniques: SimPoint

56

…..
__

L1 data cache miss rate

Instructions Per Cycle

Basic Block Vector (BBV) is a single-dimensional array that maintains a count of how
many times each basic block was executed in each interval

Sampled Simulation Techniques: SimPoint

57

BB0
BB1

BB2
BB4 BB5BB3

1 1 0 1 55

BB6

1

5 iterations

0 1 432 5 6

LOOP!

BRANCH

Program execution:

Indexed by Basic Block IDs

Maintains the execution count for
each Basic Block

BB0

Basic Block Vector:

• Basic Block Similarity: Measured using Euclidean or Manhattan Distances.

• Depicted by Basic Block Similarity Matrices.

Source: Sherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS’02

Sampled Simulation Techniques: SimPoint

58

Using Manhattan distances Using Euclidian distances

• Diagonal of the matrix à
program execution

• Point (x, y) gives similarity index
• ↑ darkness à ↑ similarity

• The BBVs obtained from the profiling step have a very large number of dimensions!

• “Curse of dimensionality”:

§ Hard to cluster the data.
§ Clustering time increases significantly.

Source: Sherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS’02

Sampled Simulation Techniques: SimPoint

59

Solution: Reduce number of dimensions
using Random Linear Projections

K-means clustering:

Sampled Simulation Techniques: SimPoint

60

• Representative region à single simulation
point
§ BBV with the lowest distance from the centroid of all

cluster centers.

• Representative regions à multiple simulation
points
§ For each cluster, choose the BBV that is closest to the

centroid of the cluster.

Source: Sherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS’02

Sampled Simulation Techniques: SimPoint

61

• Main idea behind SMARTS:

§ Using systematic statistical sampling:
• To identify a minimal representative sample from the population for simulation.
• To establish a confidence level for the error on sample estimates.

§ Simulating using two modes :
• Detailed simulation of sampled instructions.
• Functional simulation of remaining instructions.

Sampled Simulation Techniques: SMARTS

62

• SMARTS uses Systematic Sampling:

Sampled Simulation Techniques: SMARTS

63

Sample at a fixed interval
of length k units or k x U

instructions, where
k = N / n

Start sampling
at offset j

Each unit
consists of U
instructions

Total sample size:
n = N/k units

OR
n x U instructions

• Simulation:

Sampled Simulation Techniques: SMARTS

64

U instructions are measured as a
sampling unit using detailed

simulation

W instructions of detailed
simulation warm state before

each sampling unit

U(k -1) – W instructions are
functionally simulated and large

structures may be warmed

Values of U and W
depend on workload

characteristics

• Evaluation results:

§ Average error:
• 0.64% for CPI
• 0.59% for EPI

§ Speedup over full-stream simulation:
• 35x for 8-way out-of-order processors
• 60x for 16-way out-of-order processors

Sampled Simulation Techniques: SMARTS

65

By simulating fewer than 50 million
instructions in detail per benchmark.

Agenda

66

Time (Eastern) Speaker Topic

13.20 to 13.30 Trevor E. Carlson Overview of the tutorial

13.30 to 14.20 Akanksha Chaudhari Performance analysis, simulation, sampling

14.20 to 15.20 Harish Patil Using tools: Pin, PinPlay, SDE, ELFies

15.20 to 15.40 Break

15.40 to 16.20 Alen Sabu Multi-threaded sampling and LoopPoint

16.20 to 17.00 Changxi Liu Sniper and LoopPoint demo

17.00 to 17.40 Zhantong Qiu Using LoopPoint with gem5

LoopPoint Tools: Sampled Simulation of Complex
Multi-threaded Workloads using Sniper and gem5

Alen Sabu1, Changxi Liu1, Akanksha Chaudhari1, Harish Patil2, Wim Heirman2,
Zhantong Qiu3, Jason Lowe-Power3, Trevor E. Carlson1

1National University of Singapore
2Intel Corporation

3University of California, Davis

International Symposium on High-Performance Computer Architecture, February 25th, 2023, Canada

Using Tools: Pin, PinPlay, SDE, ELFies
Session 2

HARISH PATIL, PRINCIPAL ENGINEER (DEVELOPMENT TOOLS SOFTWARE)
INTEL CORPORATION

68

http://pintool.intel.com

Pin: A Tool for Writing Program Analysis Tools

69

$ pin –t pintool –– test-program Normal output +
Analysis output

counter++; print(IP)
sub $0xff, %edx
counter++; print(EA)
movl 0x8(%ebp), %eax
counter++;print(br_taken)
jle <L1>

sub $0xff, %edx
movl 0x8(%ebp), %eax
jle <L1>

Pin
Test-program

Pintool

Extra code

Run-time
Translator

Operating System

Hardware

http://pintool.intel.com/

http://pinplay.org

PinPlay: Software-based User-level Capture and
Replay

70

No binaries/inputs
No application
setup
No license
checking

Input

Program/
Libraries

License

Platforms : Linux, Windows, MacOS

Upside : It works! Large OpenMP / MPI programs, Oracle

Downside : High run-time overhead: ~100-200X for capture è
Cannot be turned on all the time

Logger pinball
Replayer

+
Pintool

http://pinplay.org/

Pinball (single-threaded):
Initial memory/register + injections

71

Replayer + Simulator

Internal states initialized

Arch. state

Initial
memory
image

foo.reg

foo.text

Sy
sc

al
l

A

Replay 50
instructions

RD
TS

C

Si
gn

al

100 250

Inject events: based on instruction counts
foo.sel / foo.reg
(injections)

•System calls : skipped by injecting next rip/ memory changed
• CPUID, RDTSC : affected registers injected
• Signals/Callbacks : New register state injected

Pinball (multi-threaded):
Pinball (single-threaded) + Thread-dependencies

72

foo.reg (per-thread)
Initial registers:
T0

Initial registers:
T1

Initial registers:
T(n-1)

Application Memory (common)
foo.text

Event injection works only if same behavior
(same instruction counts) is guaranteed

during replay
foo.reg (per-thread)

foo.sel (per-thread)

foo.race (per-thread)

[T1] 2 T2 2
[T1] 3 T2 3

[T2] 5 T4 1

Thread T1 cannot execute instruction 2
until T2 executes instruction 2

Thread T2 cannot execute instruction
5 until T4 executes instruction 1

MT Pinball == race-files provide determinism

73

ELFie : An Executable Application Checkpoint

• Checkpoint: Memory + Registers
• Application : Only program state captured -- no

OS or simulator states
• Executable : In the Executable Linkage Format

commonly used on Linux

Startup-
code

Application
Memory

Arch. State
(per thread)

User-specified
code

74

pinball2elf: Pinball converter to ELF

pinball2elf

User-specified
callbacks : per

process and per-
thread

Memory
image
(.text)

Injections
(.sel)

Arch.
State
(.reg)

Thread
order
(.race)

Startup-
code

Application
Memory
Arch.

State (per
thread)

User-specified
code

http://pinelfie.org

http://pinelfie.org/

Getting started with pinball2elf

75

Prerequisite: ‘perf’ installed on your Linux box (perf stat /bin/ls should work)
• Clone pinball2elf repository: git clone https://github.com/intel/pinball2elf.git
• cd pinball2elf/src
• make all
• cd ../examples/ST
• ./testST.sh

Tested : Ubuntu 20.04.4 LTS : gcc/g++ 7.5.0 and 9.4.0
and Ubuntu 18.04.6 LTS: gcc/g++ 7.5.0

Running ../../scripts//pinball2elf.basic.sh pinball.st/log_0
..
Running ../../scripts//pinball2elf.perf.sh pinball.st/log_0 st
export ELFIE_PERFLIST=0:0,0:1,1:1

…
hw_cpu_cycles:47272 hw_instructions:4951 sw_task_clock:224943

ELFie types: basic, sim, perf

76

basic sim perf
How to create scripts/pinball2elf.ba

sic.sh pinball
scripts/pinball2elf.sim
.sh pinball

scripts/pinball2elf.perf.sh
pinball perf.out

Exits gracefully? NO, either hangs or
dumps core

NO, either hangs or
dumps core
Simulator handles
exit

YES, when retired instruction
count reaches pinball icount

Environment
variables used

NONE ELFIE_VERBOSE=0/1
ELFIE_COREBASE=X
Set affinity : thread 0 core
X, thread 1 à core x+1

à

"ELFIE_WARMUP" to decide whether to
use warmup
"ELFIE_PCCONT" to decide how to end
warmup/simulation regions
ELFIE_PERFLIST, enables
performance counting

Optional: Operating system state (SYSSTATE) per pinball:
pintools/PinballSYSState [See CGO2021 ELFie paper]

Example: ELFIE_PERFLIST with a perf ELFie

77

ELFIE_PERFLIST, enables performance counting
(based on /usr/include/linux/perf_event.h

perftype: 0 --> HW 1 --> SW
HW counter: 0 --> PERF_COUNT_HW_CPU_CYCLES
HW counter: 1 --> PERF_COUNT_HW_CPU_INSTRUCTIONS
SW counter: 0 --> PERF_COUNT_SW_CPU_CLOCK
... <see perf_event.h:'enum perf_hw_ids' and 'enum

perf_sw_ids')
% cd examples/MT
% ../../scripts/pinball2elf.perf.sh pinball.mt/log_0 perf.out
% setenv ELFIE_PERFLIST "0:0,0:1,1:1“
% pinball.mt/log_0.perf.elfie
├── perf.out.0.perf.txt
├── perf.out.1.perf.txt
├── perf.out.2.perf.txt

ROI start: TSC 48051110586217756
Thread start: TSC 48051110623843452
--
Simulation end: TSC 48051110625045322

Sim-end-icount 3436
hw_cpu_cycles:36148 hw_instructions:3476
sw_task_clock:141901
--
Thread end: TSC 48051110625366502
ROI end: TSC 48051110625959364
hw_cpu_cycles:40097 hw_instructions:4455
sw_task_clock:188637

78

PinPoints == Pin + SimPoint

PinPoint 1: Weight 30% PinPoint 2: Weight 70%

Choose one simulation
point per phase…350 3518 …

1 2 1022 4232… …

Profile with a pin-based profiler Intervals :
30 million Instructions

each

1 2 350 4232… … 3518
Find
phases

Basic-block-vectors
Analyze with SimPoint

Program
Execution

PinPoints

PinPoints : The repeatability challenge

79

Test-program

Test-program

Problem: Two runs are not exactly same à PinPoints missed (PC marker based)

[“PinPoints out of order” “PinPoint End seen before Start”]
Found this for 25/54 SPEC2006 runs!

Profiler + SimPoint

PinPoints

Simulate

PinPlay provides repeatability

80

Test-program
PinPlay
Logger

Whole
program
pinball

Profiler + SimPoint

PinPoints

SimulateRegion
pinballs

PinPlay
Re-logger

1. University of California (San Diego), Intel Corporation, and Ghent
University
https://www.spec.org/cpu2006/research/simpoint.html

2. University of Texas at Austin
https://www.spec.org/cpu2017/research/simpoint.html

3. Northwestern University
Public Release and Validation of SPEC CPU2017 PinPoints

Single-threaded PinPoints è SPEC2006/2017
pinballs publicly available

81

https://www.spec.org/cpu2006/research/simpoint.html
https://www.spec.org/cpu2017/research/simpoint.html
https://arxiv.org/pdf/2112.06981

• Runs across different configurations are non-deterministic [Alameldeen’03]
• Locks are acquired in different order
• Unprotected shared-memory accesses

• One can’t compare two runs/simulations of the same benchmark directly
®Change in micro-architecture present/simulated or execution path

taken?

Simulation of multi-threaded Programs: The
non-determinism challenge

82

1.Alameldeen’03 Variability in Architectural Simulations of Multi-threaded Workloads (HPCA2003)

1. Run multiple simulations for each studied configuration [Alameldeen’03]
• Needs random perturbation for each run
• Average behavior per configuration
• Cost: multiple runs

• 2. Force deterministic behavior so that one run in each configuration is performed [Pereira’08
@ Intel]

• Same execution paths
• Cost: loss in fidelity, thread behavior tied to tracing machine

• 3. Simulate the same “amount of work” [Alameldeen’06] : LoopPoint approach

Dealing with non-determinism

83

A. Pereira’08: Reproducible Simulation of Multi-Threaded Workloads for Architecture Design Exploration, International
Symposium on Workload Characterization (IISWC'08)

B. Alameldeen’06 IPC Considered Harmful for Multi-processors Workloads (IEEE-Micro-2006)

Why: Profiling should look only at ‘real work’
What: Skip profiling of synchronization code
How?
• Automatically with Loop Analysis: Very hard

“Spin Detection Hardware for Improved Management of Multithreaded Systems”
Transactions on Parallel and Distributed Systems, 2006
§ Look for loops that do not update architectural state
§ Was implemented in Sniper(Pin-2) but many OpenMP spin loops maintain stats hence

do update architecture state
ü Heuristic

§ Filter synchronization library code: e.g. libiomp5.so, libpthread.so

LoopPoint: Key idea 1: Filtering Synchronization
Code during profiling

84

LoopPoint: Key idea 2: Loops as ‘Units of work’

85

Why: Property of program/binary : independent of architecture

1 2 102
2

… …

Profile with a SDE/DCFG-based profiler

Variable length intervals

Close to desired length : -sliceSize S
Program
Execution

Loop-entry KLoop-entry 1 Loop-entry N

K N

Profiling

• Global counting of loop-entries
• Region start/stop : only in the main image

• Stop when ‘desired global instruction count’ (SliceSize) is reached
• Do not count instructions in synchronization library

DCFG Generation with PinPlay

86

Dynamic Control-Flow Graph (DCFG)
Directed graph extracted for a specific execution:
Nodes è basic blocks
Edges ècontrol-flow : augmented with per-thread execution counts

Record: … dcfg-driver
-dcfg

pinball

DCFG JSON file

Replay: w/custom
PinPlay tool using DCFG

API

PinPlay + DCFG : Stronger Repeatability

87

Test-program
PinPlay

Logger +
DCFG

generation

Whole
program
pinball

LoopPoint Profiler +
SimPoint

PinPoints

DCFG JSON file

Invariant
region

markers

Computation loop
entries
(NOT

synchronization)

LoopPoint: Simulation alternatives

88

Sniper

Selective
re-logging

Region
pinball

PinPoints
file

Profile and find
representative

regions

Program
+

input

Whole-
program

pinball + DCFG

Requirement: Execution invariant region specification
(PC+count for compute loop entries)

MT pinballs

pinball2elf

ELFie

GEM5

1. pinball-driven

2. ELFie-driven3. Binary-driven

Intel Software Development Emulator (Intel SDE)

89

• The Intel® Software Development Emulator is a functional user-
level (ring 3) emulator for x86 (32b and 64b) new instructions built

upon Pin and XED (X86 encoder/decoder)
• Goal: New instruction/register emulation between the time when

they are designed and when the hardware is available.
• Used for compiler development, architecture and workload analysis,

and tracing for architecture simulators
• No special compilation required
• Supported on Windows/Linux/Mac OS
• Runs only in user space (ring 3)

How SDE Works

90

• Based on Pin (http://pintool.intel.com) and
XED decoder/encoder
(https://github.com/intelxed/xed)

• Instrument new instructions

– Add call to emulation routine

– Delete original instruction

• Emulation routine:

– Update native state with emulated state

http://www.intel.com/software/sde

N O NO N NO O O

SDE emulation
functions

New instruction
Legacy instruction

Host state Emulated
state

http://pintool.intel.com/
https://github.com/intelxed/xed
http://www.intel.com/software/sde

See later sessions of the tutorial

Using SDE for PinPoints and LoopPoint

91

Summary: Simulation of Multi-threaded Programs:
Tools & Methodologies

92

1. Pinball-driven
2. ELFie-driven
3. Binary-driven

SDE + LoopPoint
Compute-loop iterations as

`Unit of work’

1. Simulation (Sniper) -based
2.ELFie-based / Binary+ROIPerf (not covered)

Whole-program performance vs
Region-predicted performance

Where to simulate?

Are the regions representative?

How to simulate?

Agenda

93

Time (Eastern) Speaker Topic

13.20 to 13.30 Trevor E. Carlson Overview of the tutorial

13.30 to 14.20 Akanksha Chaudhari Performance analysis, simulation, sampling

14.20 to 15.20 Harish Patil Using tools: Pin, PinPlay, SDE, ELFies

15.20 to 15.40 Break

15.40 to 16.20 Alen Sabu Multi-threaded sampling and LoopPoint

16.20 to 17.00 Changxi Liu Sniper and LoopPoint demo

17.00 to 17.40 Zhantong Qiu Using LoopPoint with gem5

LoopPoint Tools: Sampled Simulation of Complex
Multi-threaded Workloads using Sniper and gem5

Alen Sabu1, Changxi Liu1, Akanksha Chaudhari1, Harish Patil2, Wim Heirman2,
Zhantong Qiu3, Jason Lowe-Power3, Trevor E. Carlson1

1National University of Singapore
2Intel Corporation

3University of California, Davis

International Symposium on High-Performance Computer Architecture, February 25th, 2023, Canada

Multi-threaded Sampling and LoopPoint
Session 3

ALEN SABU, PHD CANDIDATE
NATIONAL UNIVERSITY OF SINGAPORE

95

Simulation in the Post-Dennard Era

96

Microarchitectural simulation is slow

Solution: Simulate
regions of interest

Simulation in the Post-Dennard Era

97

Benchmarks with 8 threads,
static schedule, passive wait-
policy, simulated at 100 KIPS.

Microarchitectural simulation is slow

Solution: Simulate
regions of interest

Selection of Regions of Interest

98

Program executions are structured as phases

Selection of Regions of Interest

99

IPC

DL1

IL1

bpred

0B 50B 100B
Instructions

gzip-graphic

Program executions are structured as phases

Source: Sherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS’02

Selection of Regions of Interest

100

IPC

DL1

IL1

bpred

0B 50B 100B
Instructions

gzip-graphic

Program executions are structured as phases

Sampling using SimPoint

Selection of Regions of Interest

101

BBV1 BBV2 BBV3 BBV4 BBV6BBV5 BBV7 BBV8 BBV9 BBV10 BBV11 BBV12

SimPoint

Program Execution

Sampling using SimPoint

Selection of Regions of Interest

102

BBV1 BBV2 BBV3 BBV4 BBV6BBV5 BBV7 BBV8 BBV9 BBV10 BBV11 BBV12

SimPoint

BBV1

BBV2

BBV4

Program Execution
BBV1 BBV2 BBV4

Sampling using SimPoint

Selection of Regions of Interest

103

BBV1 BBV2 BBV3 BBV4 BBV6BBV5 BBV7 BBV8 BBV9 BBV10 BBV11 BBV12

SimPoint

BBV1

BBV2

BBV4
BBV3

BBV6

BBV9

BBV12

Program Execution
BBV3 BBV6 BBV9 BBV12

Sampling using SimPoint

Selection of Regions of Interest

104

BBV1 BBV2 BBV3 BBV4 BBV6BBV5 BBV7 BBV8 BBV9 BBV10 BBV11 BBV12

SimPoint

BBV1

BBV2

BBV4

BBV5
BBV3

BBV6

BBV9

BBV12

BBV7

BBV8

BBV10

BBV11

Program Execution
BBV5 BBV7 BBV8 BBV10 BBV11

Sampling using SimPoint

Selection of Regions of Interest

105

BBV1 BBV2 BBV3 BBV4 BBV6BBV5 BBV7 BBV8 BBV9 BBV10 BBV11 BBV12

SimPoint

BBV1

BBV2

BBV4

BBV5
BBV3

BBV6

BBV9

BBV12

BBV7

BBV8

BBV10

BBV11

25%
33.3%

41.7%

Program Execution

• SimPoint or SMARTS ➣ Instruction count-based techniques
§ Works well for single-threaded applications

Extending Single-threaded Techniques

106

a b c d e

time

100M
ins

100M
ins

100M
ins

100M
ins

100M
ins

Simulation run 1

a b c d e

time

100M
ins

100M
ins

100M
ins

100M
ins

100M
ins

Simulation run 2

• SimPoint or SMARTS➣ Instruction count-based techniques
§ Inconsistent regions for multi-threaded applications

Extending Single-threaded Techniques

107

u v w x y

time

100M
ins

100M
ins

100M
ins

100M
ins

100M
ins

Simulation run 1

u v w x y

time

100M
ins

100M
ins

100M
ins

100M
ins

100M
ins

Simulation run 2

a b c dT0

T1

e a b c d e

1Alameldeen et al., “IPC Considered Harmful for Multiprocessor Workloads”, IEEE Micro 2006

Multi-threaded Sampling is Complex

108

Instruction count-based
techniques are unsuitable1

Threads progress differently
due to load imbalance

Representing parallelism
among threads

Differentiating thread
waiting from real work

1Alameldeen et al., “IPC Considered Harmful for Multiprocessor Workloads”, IEEE Micro 2006

Multi-threaded Sampling is Complex

109

Instruction count-based
techniques are unsuitable1

Threads progress differently
due to load imbalance

Representing parallelism
among threads

Differentiating thread
waiting from real work

Identify a unit of work that is invariant across executions

FlexPoints

Wenisch et al., “SimFlex: statistical sampling of computer system simulation”, IEEE Micro’06

Multi-threaded Sampling: Prior works

110

Assumes no thread interaction

Designed for non-synchronizing throughput workloads

Requires simulation of the full application

Instruction count-based sampling

Time-based Sampling

Carlson et al., “Sampled Simulation of Multithreaded Applications”, ISPASS’13
Ardestani et al., "ESESC: A fast multicore simulator using time-based sampling." HPCA, 2013

Multi-threaded Sampling: Prior works

111

Extremely slow

Designed for synchronizing generic multi-threaded workloads

Requires simulation of the full application

Applies to generic multi-threaded workloads

BarrierPoint

Carlson et al., ”BarrierPoint: Sampled simulation of multi-threaded applications”, ISPASS’14

Multi-threaded Sampling: Prior works

112

Slow when inter-barrier regions are large

Designed for barrier-synchronized multi-threaded workloads

Scales well with number of barriers

u v

a b

Ba
rr

ie
r

w

c

Ba
rr

ie
rT0

T1

TaskPoint

Grass et al., “TaskPoint: Sampled simulation of task-based programs”, ISPASS’16

Multi-threaded Sampling: Prior works

113

Works only for the particular workload type

Designed for task-based workloads

Uses analytical models to improve accuracy

SimPoint1

SMARTS2

4Carlson et al., “Sampled Simulation of Multithreaded Applications”, ISPASS’13
5Carlson et al., ”BarrierPoint: Sampled simulation of multi-threaded applications”, ISPASS’14
6Grass et al., “TaskPoint: Sampled simulation of task-based programs”, ISPASS’16

The Unit of Work

114

1Sherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS’02
2Wunderlich et al., “SMARTS: Accelerating Microarchitecture Simulation via Rigorous Statistical Sampling”, ISCA’03
3Wenisch et al., “SimFlex: statistical sampling of computer system simulation”, IEEE Micro’06

Flex Points3

Extremely Slow
BarrierPoint5

TaskPoint6

Multiprocessor Sampling

Application-specific Sampling

Single-threaded Sampling

Time-based sampling4

Multi-threaded Sampling

Instruction count Instruction count

Time
Inter-barrier regions

Task instances

SimPoint1

SMARTS2

4Carlson et al., “Sampled Simulation of Multithreaded Applications”, ISPASS’13
5Carlson et al., ”BarrierPoint: Sampled simulation of multi-threaded applications”, ISPASS’14
6Grass et al., “TaskPoint: Sampled simulation of task-based programs”, ISPASS’16

The Unit of Work

115

1Sherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS’02
2Wunderlich et al., “SMARTS: Accelerating Microarchitecture Simulation via Rigorous Statistical Sampling”, ISCA’03
3Wenisch et al., “SimFlex: statistical sampling of computer system simulation”, IEEE Micro’06

Flex Points3

Extremely Slow
BarrierPoint5

TaskPoint6

Multiprocessor Sampling

Application-specific Sampling

Single-threaded Sampling

Time-based sampling4

Multi-threaded Sampling

Instruction count Instruction count

Time
Inter-barrier regions

Task instances

We consider generic loop iterations as the unit of work

LoopPoint Methodology

116

Where to simulate

How to simulate

LoopPoint Methodology

117

How to simulate

W
he

re
 to

 si
m

ul
at

e

Program
binary, inputs

LoopPoint Methodology

118

How to simulate

W
he

re
 to

 si
m

ul
at

e

2. Region
Analysis and

Clustering

1. Loop-based
Profiling

Program
binary, inputs

Looppoints
Specification

LoopPoint Methodology

119

W
he

re
 to

 si
m

ul
at

e

2. Region
Analysis and

Clustering

1. Loop-based
Profiling

4. (Warmup +)
Detailed Region

Simulation

3. Checkpoints
Generation

Checkpoint
driven

H
ow

 to
 si

m
ul

at
e

Region
Checkpoints

Program
binary, inputs

Looppoints
Specification

LoopPoint Methodology

120

W
he

re
 to

 si
m

ul
at

e

2. Region
Analysis and

Clustering

1. Loop-based
Profiling

4. (Warmup +)
Detailed Region

Simulation

3. Checkpoints
Generation

Checkpoint
driven

Binary driven

H
ow

 to
 si

m
ul

at
e

5. Performance
Extrapolation

Region
Checkpoints

Program
binary, inputs

Looppoints
Specification

Loop-based Profiling

121

W
he

re
 to

 si
m

ul
at

e

2. Region
Analysis and

Clustering

1. Loop-based
Profiling

4. (Warmup +)
Detailed Region

Simulation

3. Checkpoints
Generation

Checkpoint
driven

Binary driven

H
ow

 to
 si

m
ul

at
e

5. Performance
Extrapolation

Region
Checkpoints

Program
binary, inputs

Looppoints
Specification

1DCFG: Dynamic Control-Flow Graph

Loop-based Profiling

122

1. Loop-based
Profiling

1. Loop-based
Profiling

1DCFG: Dynamic Control-Flow Graph

Loop-based Profiling

123

DCFG1

Generation

Application
Execution
Recording

Vector
Concatenation

Per-thread
Feature
Vectors

1. Loop-based
Profiling

1. Loop-based
Profiling

Synchronization
Filtering

Slice Generation
(PC, count)

Flow-control

Region Representation

124

Program executionThreshold #Instructions

Region/Slice
(PC1, count1) (PC2, count2)

Loop A Loop B … Loop B Loop A Loop C ……

BBV:t0 BBV:t1 BBV:t2 BBV:t3

Concatenated BBV

Per-thread BBVs

Region Representation

125

Program executionThreshold #Instructions

Region/Slice
(PC1, count1) (PC2, count2)

Loop A Loop B … Loop B Loop A Loop C ……

BBV:t0BBV:t1BBV:t2BBV:t3
Concatenated BBV

Per-thread BBVs

638.imagick_s/magick/morphology.c

2842 #if defined(MAGICKCORE_OPENMP_SUPPORT)

2843 #pragma omp parallel for schedule(static,4) shared(progress,status) \

2844 magick_threads(image,result_image,image->rows,1)

2845 #endif

2846 for (y=0; y < (ssize_t) image->rows; y++)

2847 {

……

2886 for (x=0; x < (ssize_t) image->columns; x++)

2887 {

3021 for (v=0; v < (ssize_t) kernel->height; v++) {

3022 for (u=0; u < (ssize_t) kernel->width; u++, k--) {

……

3034 } /* u */

……

3037 } /* v */

3342 } /* x */

3357 } /* y */

……

A LoopPoint Region

126

(
P
C
1
:
c
o
u
n
t
1
)

(
P
C
2
:
c
o
u
n
t
2
)

638.imagick_s, train input, 8 threads

Accuracy Results

127

Prediction error wrt. performance of whole application
SPEC CPU2017 with train inputs, 8 threads

average

Accuracy Results

128

Prediction error wrt. performance of whole application
SPEC CPU2017 with train inputs, 8 threads

average

Active: 2.33%
Passive: 2.23%

Changing Thread Count

129

Runtime prediction error wrt. whole application runtime
NPB 3.3 with Class C inputs, 8 and 16 threads, passive wait-policy

8 cores: 2.87%
16 cores: 1.78%

Speedup

130

Parallel and serial speedup achieved for LoopPoint

Serial
Actual
Theoretical

Parallel
Actual
Theoretical

SPEC CPU2017 with train inputs, 8 threads, active wait-policy

Serial: 9×
Parallel: 303×

Speedup

131

Parallel and serial speedup achieved for LoopPoint
NPB with Class C inputs, 8 and 16 threads, passive wait-policy

Parallel

8 cores
Serial

16 cores
Serial
Parallel

Serial
Actual
Theoretical

Parallel
Actual
Theoretical

SPEC CPU2017 with train inputs, 8 threads, active wait-policy

Serial: 9×
Parallel: 303×

Serial: 49×
Parallel: 1031×

8 core

Serial: 31×
Parallel: 606×

16 core

Speedup

132

Theoretical Speedup comparison with BarrierPoint
SPEC CPU2017 with ref inputs, 8 threads, passive wait-policy

Up to 31000X
speedup!

LoopPoint

BarrierPoint

Serial

Serial

Parallel

Parallel

Serial: 244×
Parallel: 11587×

Full Applications Vs. Regions of Interest

133

Application Train Ref
603.bwaves_s.1 33.33 1.01
603.bwaves_s.2 32.79 1.03
607.cactuBSSN_s.1 26.81 0.45
619.lbm_s.1 4.86 0.65
621.wrf_s.1 9.28 0.47
627.cam4_s.1 4.78 0.23
628.pop2_s.1 6.27 0.46
638.imagick_s.1 25.93 0.13
644.nab_s.1 21.15 0.32
644.nab_s.2 9.74 –
649.fotonik3d_s.1 12.93 1.55
654.roms_s.1 3.98 0.71
657.xz_s.1 21.43 0.74
657.xz_s.2 42.55 1.26

Fraction of regions to be simulated in detail for
SPEC CPU2017 benchmarks using 8 threads

1

10

100

1000

10000

100000

1000000

10000000

603
.bwave

s_
s.1

603
.bwave

s_
s.2

607
.ca

ctu
BSSN_s

.1

619
.lb

m_s
.1

621
.w

rf_
s.1

627
.ca

m4_s
.1

628
.pop2

_s
.1

638
.im

agic
k_

s.1

644
.nab_

s.1

644
.nab_

s.2

649
.fo

ton
ik3

d_s.1

654
.ro

ms_
s.1

657
.xz

_s.1

657
.xz

_s.2

W
al

l T
im

e
(in

 s
ec

on
ds

)

full application regions of interest

hour

day
week

A comparison of simulation wall times of SPEC CPU2017 benchmarks using
train inputs and 8 threads on SDE-based IWPS (CLX)

• Links
§ SPEC2017 Looppoint-based checkpoints (ELFies1)

• 603.bwaves_s.1: https://mynbox.nus.edu.sg/u/lAblPcAG5X6GBuU-/9491eb22-b988-
4bc5-9865-991a66d20944?l

• 603.bwaves_s.2: https://mynbox.nus.edu.sg/u/8L13gqS9d8DivXeB/6d14af21-6c4e-
413a-b046-3c6115a211fc?l

§ LoopPoint GitHub: https://github.com/nus-comparch/looppoint
§ ELFies GitHub: https://github.com/intel/pinball2elf
§ Web page: https://looppoint.github.io
§ Short talk: https://youtu.be/Tr6O9MkT42g
§ Questions: alen@u.nus.edu.sg, tcarlson@nus.edu.sg

1Representative checkpoints of SPEC CPU2017 benchmarks with 8 OpenMP threads, active wait-policy,
static schedule, original binaries compiled with ICC (-O3) for Nehalem architecture.

More Information

134

https://mynbox.nus.edu.sg/u/lAblPcAG5X6GBuU-/9491eb22-b988-4bc5-9865-991a66d20944?l
https://mynbox.nus.edu.sg/u/lAblPcAG5X6GBuU-/9491eb22-b988-4bc5-9865-991a66d20944?l
https://mynbox.nus.edu.sg/u/8L13gqS9d8DivXeB/6d14af21-6c4e-413a-b046-3c6115a211fc?l
https://mynbox.nus.edu.sg/u/8L13gqS9d8DivXeB/6d14af21-6c4e-413a-b046-3c6115a211fc?l
https://github.com/nus-comparch/looppoint
https://github.com/intel/pinball2elf
https://looppoint.github.io/
https://youtu.be/Tr6O9MkT42g
mailto:alen@u.nus.edu.sg
mailto:tcarlson@nus.edu.sg

Agenda

135

Time (Eastern) Speaker Topic

13.20 to 13.30 Trevor E. Carlson Overview of the tutorial

13.30 to 14.20 Akanksha Chaudhari Performance analysis, simulation, sampling

14.20 to 15.20 Harish Patil Using tools: Pin, PinPlay, SDE, ELFies

15.20 to 15.40 Break

15.40 to 16.20 Alen Sabu Multi-threaded sampling and LoopPoint

16.20 to 17.00 Changxi Liu Sniper and LoopPoint demo

17.00 to 17.40 Zhantong Qiu Using LoopPoint with gem5

LoopPoint Tools: Sampled Simulation of Complex
Multi-threaded Workloads using Sniper and gem5

Alen Sabu1, Changxi Liu1, Akanksha Chaudhari1, Harish Patil2, Wim Heirman2,
Zhantong Qiu3, Jason Lowe-Power3, Trevor E. Carlson1

1National University of Singapore
2Intel Corporation

3University of California, Davis

International Symposium on High-Performance Computer Architecture, February 25th, 2023, Canada

Sniper and LoopPoint Demo
Session 4

CHANGXI LIU, PHD CANDIDATE
NATIONAL UNIVERSITY OF SINGAPORE

137

The Architect’s Tools – Design Waterfall

138

Analytical models

Cycle-accurate
simulation

#
 a

rc
hi

te
ct

ur
es

co
ns

id
er

ed
1010 105

1000
10 1

design process (time)

be
nc

hm
ar

ks
/a

pp
lic

at
io

ns

Program characteristics

Traces /
Microbenchmarks

Pre-silicon software
optimization,

co-design

High-level simulation

Representative
applications

Fast or accurate?

139

RTL simulators

Architectural sim.

10% 0%

Sniper

50%

1,000 x

1,000 x

• August 2010: Sniper forked from MIT Graphite
• November 2011: SC’11 paper, first public release
• Today:

§ Interval and Instruction-window-centric core models
§ 7000+ downloads from 100+ countries
§ Active mailing list
§ 1200+ citations (SC’11 & TACO’12 papers)

Sniper History

140

snipersim.org downloads by quarter

Simulation in Sniper

141

functional
simulator

(Pin)
memory hierarchy

simulator

branch predictor
simulator

processor cores

A single-process,
multithreaded
workload (v1.0)

Multiple,
single-threaded
workloads (v2.0)

Execution-driven simulation

Trace-driven simulation

Simulation in Sniper with SIFT

142

memory
hierarchy
simulator

processor cores

Functional-first simulation + timing-feedback

Pin

...

A bi-directional
single-thread

SIFT connection

PinPlay

Pin
+SDE

$ run-sniper -c gainestown --roi -- ./test/fft/fft -p2
[SNIPER] Start
[SNIPER] --
[SNIPER] Sniper using Pin frontend
[SNIPER] Running pre-ROI region in CACHE_ONLY mode
[SNIPER] Running application ROI in DETAILED mode
[SNIPER] Running post-ROI region in FAST_FORWARD mode
[SNIPER] --

FFT with Blocking Transpose
1024 Complex Doubles
2 Processors

[SNIPER] Enabling performance models
[SNIPER] Setting instrumentation mode to DETAILED
[SNIPER] Disabling performance models
[SNIPER] Leaving ROI after 2.08 seconds
[SNIPER] Simulated 1.1M instructions, 0.9M cycles, 1.22 IPC
[SNIPER] Simulation speed 545.5 KIPS (272.8 KIPS / target core - 3666.2ns/instr)
[SNIPER] Setting instrumentation mode to FAST_FORWARD

PROCESS STATISTICS
...
[SNIPER] End
[SNIPER] Elapsed time: 5.97 seconds

Running Sniper

143

Configuration Region of interest markers in codeWorkload command line

sim.out: Quick overview of basic performance results

Simulation results

144

| Core 0 | Core 1
Instructions | 506505 | 505562
Cycles | 469101 | 468620
Time (ns) | 176354 | 176173

Branch predictor stats | |
num incorrect | 1280 | 1218
misprediction rate | 7.70% | 7.42%
mpki | 2.53 | 2.41

Cache Summary | |
Cache L1-I | |
num cache accesses | 46642 | 46555
num cache misses | 217 | 178
miss rate | 0.47% | 0.38%
mpki | 0.43 | 0.35

Cache L1-D | |
num cache accesses | 332771 | 332412
num cache misses | 517 | 720
miss rate | 0.16% | 0.22%
mpki | 1.02 | 1.42

Cache L2 | |
num cache accesses | 984 | 1090
num cache misses | 459 | 853

• Where did my cycles go?
§ Cycles/time per instruction
§ Broken up in components

• Base: ideal execution, no bottlenecks
• Add “lost” cycles do to each HW structure

§ Normalize by either
• Number of instructions (CPI stack)
• Execution time (time stack)

• Different from miss rates:
cycle stacks directly quantify the effect on performance

• (Also: top-down analysis in VTune)

Cycle stacks

145

CPI

DRAM
I-cache
Branch
Base

• Cycle stacks through time

Advanced visualization

146

• Clone from https://github.com/snipersim/snipersim
• export CC=gcc-9; export CXX=g++-9
• make
• Set SNIPER_ROOT to point to the Sniper base directory
• All set to use Sniper 8.0!
• Testing:

§ make -C test/fft

Downloading Sniper 8.0

147

https://github.com/snipersim/snipersim

• Prerequisites
§ x86-based Linux machine
§ Require GCC 9
§ Python
§ Docker

Downloading LoopPoint

148

• Opensource code
§ https://github.com/nus-comparch/looppoint.git
§ Clone the repo

Downloading LoopPoint

149

https://github.com/nus-comparch/looppoint.git

• make build
§ Build docker image

Building LoopPoint

150

Successfully built b006ee297a64
Successfully tagged ubuntu:18.04-looppoint

• make build
• make

§ Run the docker image

Building LoopPoint

151

• make build
• make
• make apps

§ Build the demo applications
§ Source code of the apps

• apps/demo/matrix-omp
• apps/demo/dotproduct-omp

Building LoopPoint

152

• make build
• make
• make apps
• make tools

§ Build Sniper and LoopPoint tools

Building LoopPoint

153

Sniper build completed

...

Downloading
Sniper

Downloading
Intel SDE

• Opensource code
§ https://github.com/nus-comparch/looppoint.git
§ Clone the repo

• LoopPoint script
§ make build

• Build docker image

§ make
• Run docker image

§ make apps
• Build the demo applications

§ make tools
• Build Sniper and LoopPoint tools

Building LoopPoint

154

https://github.com/nus-comparch/looppoint.git

• Use LoopPoint driver script
§ ./run-looppoint.py –h
§ Provides the information on how to run the tool

Running LoopPoint

155

• Example run command
§ ./run-looppoint.py -p demo-matrix-1 -n 8 --force

Running LoopPoint

156

• The LoopPoint driver script
§ Profiling the application

Running LoopPoint

157

• The LoopPoint driver script
§ Profiling the application

• make_mt_pinball : Generate whole-program pinball
• gen_dcfg : Generate DCFG file to identify loop information
• gen_bbv : Generate feature vector of each region
• gen_cluster : Cluster regions

Running LoopPoint

158

• Makes Pin-based analyses repeatable.
• Command:

§ $SDE_KIT/pinplay-scripts/sde_pinpoints.py --mode mt --
cfg=$CFGFILE --log_options="-start_address main -log:fat
-log:basename $WPP_BASE” --replay_options="-replay:strace" –l

• Generates a whole-program pinball for further profiling steps

Fat Pinball

159

• A dynamic control-flow graph (DCFG) is a specialized control-flow
graph that adds data from a specific execution of a program

• C++ DCFG APIs available for accessing the data
§ DCFG_LOOP_CONTAINER::get_loop_ids

• Get the set of loop IDs
§ DCFG_LOOP

• get_routine_id : get the function that the loop belongs to
• get_parent_loop_id : get the parent loop

DCFG Generation

160

• A dynamic control-flow graph (DCFG) is a specialized control-flow
graph that adds data from a specific execution of a program

• C++ DCFG APIs available for accessing the data.
• More APIs can be found in

§ tools/sde-external-9.14.0-2022-10-25-lin/pinkit/sde-example/include
• dcfg_api.H
• dcfg_pin_api.H
• dcfg_trace_api.H

DCFG Generation

161

• Collect Loop Information
• Command:

§ $SDE_BUILD_KIT/pinplay-scripts/replay.py --pintool=sde-global-
looppoint.so --pintool_options “-dcfg -replay:deadlock_timeout
0 -replay:strace -dcfg:out_base_name $DCFG_BASE $WPP_BASE”

§ -dcfg : enable DCFG generation
§ DCFG_BASE : the basename of DCFG that is generated

DCFG Generation

162

• Profiling the feature vector of each region
• Command:

§ $SDE_BUILD_KIT/pinplay-scripts/sde_pinpoints.py --pintool="sde-global-looppoint.so"
--global_regions --pccount_regions --cfg $CFG --whole_pgm_dir $WPP_DIR --mode mt -S
$SLICESIZE -b --replay_options "-replay:deadlock_timeout 0 -global_profile -
emit_vectors 0 -filter_exclude_lib libgomp.so.1 -filter_exclude_lib libiomp5.so -
looppoint:global_profile -looppoint:dcfg-file $DCFG -looppoint:main_image_only 1 -
looppoint:loop_info $PROGRAM.$INPUT.loop_info.txt -flowcontrol:verbose 1 -
flowcontrol:quantum 1000000 -flowcontrol:maxthreads $NCORES”

§ -pccount_regions : (PC, count)-based region information
§ -S $SLICESIZE: The global instruction count for each region
§ -filter_exclude_lib: Exclude libraries from profiling information

BBV Generation

163

• Profiling the feature vector of each region
• Command:

§ $SDE_BUILD_KIT/pinplay-scripts/sde_pinpoints.py --pintool="sde-global-looppoint.so"
--global_regions --pccount_regions --cfg $CFG --whole_pgm_dir $WPP_DIR --mode mt -S
$SLICESIZE -b --replay_options "-replay:deadlock_timeout 0 -global_profile -
emit_vectors 0 -filter_exclude_lib libgomp.so.1 -filter_exclude_lib libiomp5.so -
looppoint:global_profile -looppoint:dcfg-file $DCFG -looppoint:main_image_only 1 -
looppoint:loop_info $PROGRAM.$INPUT.loop_info.txt -flowcontrol:verbose 1 -
flowcontrol:quantum 1000000 -flowcontrol:maxthreads $NCORES”

§ -looppoint:main_image_only: Select only main image for choosing markers
§ -looppoint:loop_info : Utilize loop information as the marker of each region
§ -flowcontrol:quantum : synchronize each thread every 1000000 instructions

BBV Generation

164

• Cluster all regions into several groups.
§ SimPoint [1]
§ Utilize feature vectors of all threads
§ kmeans algorithm

[1] Sherwood et al., “Automatically Characterizing Large Scale Program Behavior”, ASPLOS’02

Clustering

165

• Cluster all regions into several groups.
• Command

§ $SDE_BUILD_KIT/pinplay-scripts/sde_pinpoints.py --pintool="sde-
global-looppoint.so" --cfg $CFG --whole_pgm_dir $WPP_DIR -S
$SLICESIZE --warmup_factor=2 --maxk=$MAXK --append_status -s --
simpoint_options="-dim $DIM -coveragePct 1.0 -maxK $MAXK”

§ DIM : The reduced dimension of the vector that BBVs are projected to
§ MAXK : Maximum number of clusters for kmeans

Clustering

166

• The LoopPoint driver script
§ Profiling Results:

• matrix.1_267851.global.pinpoints.csv
• (start-pc, start-pc-count), (end-pc, end-pc-count)

Running LoopPoint

167

• The LoopPoint driver script
§ Profiling Results:

• matrix.1_267851.global.pinpoints.csv
• (start-pc, start-pc-count), (end-pc, end-pc-count)
• Cluster group id

Running LoopPoint

168

• The LoopPoint driver script
§ Profiling Results:

• matrix.1_267851.global.pinpoints.csv
• (start-pc, start-pc-count), (end-pc, end-pc-count)
• Cluster group id
• Cluster multiplier

Running LoopPoint

169

• The LoopPoint driver script
§ Profiling the application

• matrix.1_267851.global.pinpoints.csv
• Sampled Simulation : (start-pc, start-pc-count), (end-pc,
end-pc-count), cluster group id

• Extrapolation : cluster group id, cluster-multiplier

Running LoopPoint

170

• The LoopPoint driver script
§ Profiling the application
§ Sampled simulation of selected regions

Running LoopPoint

171

Simulation using Sniper

172

• LoopPoint support in Sniper 8.0
• Handle the beginning and ending of representative regions

• Using PC-based markers

§ Sniper shifts simulation modes based on signals from Pin/SDE

Simulation using Sniper

173

• LoopPoint support in Sniper 8.0
§ Handle the beginning and ending of representative regions
§ ./run-sniper -n 8 -gscheduler/type=static -cgainestown -

ssimuserroi --roi-script --trace-args=-pinplay:control
start:address:<PC>:count<Count>:global --trace-args=-pinplay:control
stop:address:<PC>:count<Count>:global -- <app cmd>

§ Region start: -control start:address:<PC>:count<Count>
§ Region end: -control end:address:<PC>:count<Count>
§ PC, Count : LoopPoint region boundaries
§ Note: Use -control if SDE is used instead of Pin/Pinplay

Simulation using Sniper

174

.

-- ./base.exe

Start PC and count

End PC and countApplication

Simulation using Sniper

175

Warmup
ends

Fast-forwarding
the rest

Detailed simulation

• The LoopPoint driver script
§ Profiling the application
§ Sampled simulation of selected regions
§ Extrapolation of performance results

Running LoopPoint

176

Extrapolation of Performance Result

177

• Runtime of corresponding representative region : region_runtime
• Scaling factor : multiplier

• The LoopPoint driver script
§ Profiling the application
§ Sampled simulation of selected regions
§ Extrapolation of performance results

• Predicted runtime using sampled simulation

Running LoopPoint

178

• The LoopPoint driver script
§ Profiling the application
§ Sampled simulation of selected regions
§ Extrapolation of performance results

• Predicted runtime using sampled simulation
• The error rate of obtained using sampled simulation

Running LoopPoint

179

Config file

• Create a config file in the application directory (format as below)

Running Custom Workloads

180

603.bwaves_s.1.cfg

• Run command:
$LOOPPOINT_ROOT/run-looppoint.py -c 603.bwaves_s.1.cfg -w active -n 8 --force

Agenda

181

Time (Eastern) Speaker Topic

13.20 to 13.30 Trevor E. Carlson Overview of the tutorial

13.30 to 14.20 Akanksha Chaudhari Performance analysis, simulation, sampling

14.20 to 15.20 Harish Patil Using tools: Pin, PinPlay, SDE, ELFies

15.20 to 15.40 Break

15.40 to 16.20 Alen Sabu Multi-threaded sampling and LoopPoint

16.20 to 17.00 Changxi Liu Sniper and LoopPoint demo

17.00 to 17.40 Zhantong Qiu Using LoopPoint with gem5

LoopPoint Tools: Sampled Simulation of Complex
Multi-threaded Workloads using Sniper and gem5

Alen Sabu1, Changxi Liu1, Akanksha Chaudhari1, Harish Patil2, Wim Heirman2,
Zhantong Qiu3, Jason Lowe-Power3, Trevor E. Carlson1

1National University of Singapore
2Intel Corporation

3University of California, Davis

International Symposium on High-Performance Computer Architecture, February 25th, 2023, Canada

Using LoopPoint with gem5
Session 5

ZHANTONG QIU, UNDERGRADUATE STUDENT
UNIVERSITY OF CALIFORNIA, DAVIS

183

Quick background on gem5

Main difference between gem5 and Sniper?
gem5 is an execute-in-execute simulator

Two “modes:”
Full-system: boots a Linux kernel, requires disk image, etc.
Syscall emulation: “Fakes” the Linux system calls in gem5

We will be using syscall emulation (SE) mode

gem5 is a python interpreter which configures and controls simulation
We will show the python code needed to set up LoopPoints/ELFies

How to perform LoopPoint sampling in gem5?

● Our implementation focuses on using the checkpoint methodology
○ We take a checkpoint at the beginning of the selected region with a fast and simple

architecture setup, and restore the checkpoints with the desired architecture.

● The LoopPoint module in gem5 is designed to use with the gem5 standard
library
○ The gem5 standard library provides flexible and convenience modules for simulation setups.

● In gem5, we use checkpoint to save the state of the simulation. It allows us
to restore and simulate a particular region of the whole simulation with
different architectures.

A small example of what can and can not change when
restoring a gem5 checkpoint

When taking checkpoints:

When restoring a checkpoint:

A tutorial on checkpointing in gem5 was given as a part of the gem5 2022
Bootcamp. A recording of this event can be found within this link:

https://gem5bootcamp.github.io/gem5-bootcamp-
env/modules/extra%20topics/checkpointing-commmonitor

You can find example scripts of taking checkpoints in the gem5 directory:

https://gem5bootcamp.github.io/gem5-bootcamp-env/modules/extra%20topics/checkpointing-commmonitor
https://gem5bootcamp.github.io/gem5-bootcamp-env/modules/extra%20topics/checkpointing-commmonitor

How to take checkpoints for LoopPoint sampling?

LoopPoint
Data File

LoopPoint
CsvLoader

LoopPoint
JsonLoader

If it’s a CSV file

If it’s a JSON file

Simulation
loop

Setup
workload

LoopPoint
Save
Checkpoint
Generator

When
LoopPoint
exit event
raises

Checkpoints

The LoopPoint JSON file

"1": {
"simulation": {

"start": {
"pc": 4221392,
"global": 211076617,
"relative": 15326617

},
"end": {

"pc": 4221392,
"global": 219060252,
"relative": 23310252

}
},
"multiplier": 4.0,
"warmup": {

"start": {
"pc": 4221056,
"count": 23520614

},
"end": {

"pc": 4221392,
"count": 211076617

}
}

},

"2": {
"simulation": {

"start": {
"pc": 4206672,
"global": 1

},
"end": {

"pc": 4221392,
"global": 6861604,
"relative": 6861604

}
},
"multiplier": 1.0

}

How to take checkpoints for LoopPoint sampling?

LoopPoint
Data File

LoopPoint
CsvLoader

LoopPoint
JsonLoader

If it’s a CSV file

If it’s a JSON file

Simulation
loop

Setup
workload

LoopPoint
Save
Checkpoint
Generator

When
LoopPoint
exit event
raises

Checkpoints

A config script with a simple architecture

LoopPoint
Data File

LoopPoint
CsvLoader

LoopPoint
JsonLoader

If it’s a CSV file

If it’s a JSON file

OR

LoopPoint
CsvLoader

Setup
workload

LoopPoint
JsonLoader

Simulation
loop

LoopPoint
Save
Checkpoint
Generator

When
LoopPoint
exit event
raises

Checkpoints

Example command to run the checkpoint script:

build/X86/gem5.opt create-checkpoints.py

Example output

Example checkpoints:

The process is similar for restoring a checkpoint

LoopPoint
Data File LoopPoint

JsonLoader
Simulation
loop

Setup
workload

Checkpoint

Custom
Generator

When
LoopPoint
exit event
raises

Region id

LoopPoint
Data File LoopPoint

JsonLoader

Region id

Setup
workload

CheckpointRegion id

Simulation
loop

Custom
Generator

When
LoopPoint
exit event
raises

Where to find the LoopPoint related files?

Where to find the LoopPoint related files?

Where to find the LoopPoint related files?

Debug Flag
The debug flag is activated by passing the option in the command line. For example:

It shows all the PCs and PC Count pairs that the simulation is tracking.

It also shows the PC Count pair that’s struggling the exit event and the remaining pairs that
haven’t been encountered.

build/X86/gem5.opt —–debug–flags=PcCountTracker example-script.py

Useful gem5 tutorials

Link to gem5 standard library tutorial:

https://www.gem5.org/documentation/gem5-stdlib/overview

Link to gem5 2022 bootcamp website:

https://gem5bootcamp.github.io/gem5-bootcamp-env/

https://www.gem5.org/documentation/gem5-stdlib/overview
https://gem5bootcamp.github.io/gem5-bootcamp-env/

Thank you!

207

LoopPoint Tools: Sampled Simulation of Complex
Multi-threaded Workloads using Sniper and gem5

Alen Sabu1, Changxi Liu1, Akanksha Chaudhari1, Harish Patil2, Wim Heirman2,
Zhantong Qiu3, Jason Lowe-Power3, Trevor E. Carlson1

1National University of Singapore
2Intel Corporation

3University of California, Davis

International Symposium on High-Performance Computer Architecture, February 25th, 2023, Canada

